
German Cancer Research Center Heidelberg
Department of Molecular Biophysics

Head of Department: Prof. Dr. Sándor Suhai

MIRA: An Automated Genome and EST
Assembler

Ph.D. Thesis to acquire the title of

Doctor scientiarum humanarum (Dr.sc.hum.)

of

The Medical Faculty of Heidelberg

of

The Ruprecht-Karls-University

presented by
Bastien Chevreux

from Duisburg
2005

Dean: Prof. Dr. Claus R. Bartram
Referee: Prof. Dr. Sándor Suhai

Some of the illustrations and parts of the text in this thesis also appeared in
the publications Chevreux et al. (1999), Chevreux et al. (2000) and Chevreux
et al. (2004).

Avid readers of David Gerrold will certainly recognise the quotes from his
books at the beginning of each chapter of this thesis.

Contents

1 Introduction and Motivation 1
1.1 Genome and EST sequencing projects 1
1.2 State of the art assembly . 2
1.3 Aim of the thesis . 3

2 Fundamentals of sequencing and assembly 6
2.1 Definitions and methods . 6
2.2 Error types and rates . 17

2.2.1 Errors of the data acquisition process 17
2.2.2 Errors due to biology . 20

2.3 Peculiarities of EST sequencing . 21
2.3.1 Biological background . 21
2.3.2 Implications for assembly projects 22

3 Assembly strategies 25
3.1 Existing strategies . 25
3.2 Developing a new strategy . 28

3.2.1 Tackling misassemblies . 29
3.2.2 Focussing on observable data 31
3.2.3 Pattern analysis . 31

4 Methods and Algorithms 35
4.1 Data preprocessing and input . 35
4.2 Read scanning . 38

4.2.1 Formalising the problem . 38
4.2.2 Present algorithms . 40
4.2.3 DNA-Shift-AND algorithm 42
4.2.4 The ZEBRA algorithm . 45

4.3 Systematic match inspection . 54
4.3.1 Improving Smith-Waterman alignment by banding 55
4.3.2 Parametrising Smith-Waterman alignment 59

i

Contents Thesis

4.3.3 Attributing an alignment overlap 61
4.3.4 Building a graph . 63

4.4 Building contigs . 64
4.4.1 Pathfinder and contig interaction 64
4.4.2 Path traversal strategies . 66
4.4.3 Contig . 68
4.4.4 Contig approval methods . 69
4.4.5 Consensus and consensus quality computation 74

4.5 Automatic editing . 78
4.6 Finding unknown repeats . 79

4.6.1 Repeat types . 79
4.6.2 Existing approaches . 81
4.6.3 Locating repeats through error pattern analysis 81

4.7 Read extension . 84
4.7.1 Intra-contig and extra-contig read extension 85
4.7.2 Extension algorithms . 85

4.8 Iterative cycling . 87
4.9 Modifications for EST assembly . 88

4.9.1 Coverage: meeting both extremes 88
4.9.2 Detection of SNPs in genes and gene families 90
4.9.3 Classification of SNPs . 93

5 Results and discussion 95
5.1 Genome assembly . 95
5.2 EST assembly . 99
5.3 Discussion . 105

6 Conclusion and outlook 108

A Development details 110
A.1 Programming environment . 110
A.2 Programming approaches . 112
A.3 Code statistics . 113

B Manual pages 114
B.1 Synopsis . 114
B.2 Description . 114
B.3 Working modes . 116
B.4 Options . 116

ii

Contents Thesis

B.4.1 -GENERAL (-GE) . 117
B.4.2 -ESTGENERAL (-EG) . 118
B.4.3 -ASSEMBLY (-AS) . 119
B.4.4 -DATAPROCESSING (-DP) 120
B.4.5 -CLIPPING (-CL) . 121
B.4.6 -ALIGN (-AL) . 123
B.4.7 -CONTIG (-CO) . 124
B.4.8 -EDIT (-ED) . 126
B.4.9 -DIRECTORY (-DIR, -DI) 127
B.4.10 -FILE (-FI) . 127
B.4.11 -OUTPUT (-OUT) . 128
B.4.12 Quick mode switches . 129
B.4.13 Other switches . 129

B.5 Input / Output . 130
B.5.1 Filenames . 130
B.5.2 Fileformats . 131
B.5.3 STDOUT . 132
B.5.4 STDERR . 132
B.5.5 Logfiles . 133

B.6 Tags used in the assembly by MIRA and EdIt 133
B.6.1 Tags read (and used) . 133
B.6.2 Tags set (and used) . 134

B.7 Requirements . 135
B.8 Speed and memory considerations 136
B.9 Usage . 137

B.9.1 Assembly from scratch with GAP4 and EXP files 137
B.10 Known Problems / Bugs . 138
B.11 Caveats . 138
B.12 TODOs . 140
B.13 Working principles . 140
B.14 License, Disclaimer and Copyright 141
B.15 Authors . 142
B.16 Miscellaneous . 142
B.17 See Also . 143

Literature 144
References . 144
Own publications . 155

iii

Contents Thesis

Index 156

Curriculum Vitae 160

Acknowledgements 161

iv

List of Figures

1 Simplified shotgun sequencing process 9
2 Amplification of DNA through vectors 10
3 Location of forward and reverse reads on plasmids 10
4 Example for trace data with the four gel lanes superposed. 11
5 Example for bad trace signal quality, start of trace 18
6 Example for good trace signal quality, middle of trace 18
7 Example for bad signal quality, end of a trace 19
8 Example for a gene architecture in eukaryotic genomes. 22
9 Example for gene splice variations in eukaryotic genomes. 23

10 Conventional assembly . 27
11 Integrated assembly . 28
12 Explainable assembly discrepancy 30
13 Unexplainable assembly discrepancy 30
14 Phases of a MIRA assembly cycle 32

15 Mode of operation for DNASAND 44
16 Transforming a nucleotide 8-tuple (octet) into a 16 bit hash. . . . 46
17 Transforming an octet with an undefined base into hashes 46
18 Computation of the combined hash-position table 47
19 Splitting a combined hash-position table into subtables. 48
20 Computing a octet distance histogram. 50
21 Compressing imprints into boolean arrays. 52
22 Transforming 9-tuples into hashes allowing for errors 53
23 Read scan matrices. 54
24 Smith-Waterman banding. 56
25 Smith-Waterman band prediction 57
26 Smith-Waterman (SW) band calculation predecessor rules 58
27 Modified Smith-Waterman algorithm: accepted match. 62
28 Modified Smith-Waterman algorithm: rejected match. 62
29 Assembly overlap graph. 63

v

List of Figures Thesis

30 Example for an assembly graph . 66
31 Path building examples. 67
32 Assembly graph example. 69
33 Failure example when using simple read acceptance strategies in

contigs. 70
34 Contig using additional sequencing information. 71
35 Example for using strict signal checking in contig standard repeat

regions. 73
36 Calculating base group qualities 77
37 Discovery of previously unknown long term repeats. 82
38 Resolved long term repeats with PRMB tags. 83
39 Extension of confidence regions. 86
40 Coverage example in non-normalised EST project 89
41 Detection of SNP base in EST sequences 91
42 Merging mRNA transcripts . 92
43 Categorising SNPs with sequences that have strain information . 93

44 Sample of an assembly HTML output 107

vi

List of Tables

1 Simple weight matrix example . 14

2 Used SW scoring weight matrix . 59
3 Default gap length penalty scores 60
4 Scoring weight matrix for the expected score 61

5 Genome projects used for benchmarking 97
6 Comparison of MIRA/Edit, GAP4/cycle and PHRAP assemblies. . 98
7 Results from EST assembly . 100
8 Runtime and memory consumption 103

vii

1 Introduction and Motivation

“New problems demand new solutions. New solutions create new
problems.” (Solomon Short)

Shotgun sequencing genomic sequences for subsequent reconstruction is com-
parable to assembling a jigsaw puzzle. These genomic puzzles, of course, are
much more complex than the average jigsaw puzzle: they tend to be about 500
to 5 million pieces, printed on both sides, with many vital pieces possibly miss-
ing. Some of the pieces are dirty or unrecognisable, and several pieces from an-
other puzzle might have been mixed in. Additionally, a few pieces themselves
appear to have been cut and reassembled by a very impatient two-year-old with
a pair of scissors and a bottle of glue.

The extensively studied reconstruction of the unknown, correct contiguous
nucleic acid sequence by inferring it through the help of a number of represen-
tations1 is called the assembly problem. The devil is in the details, however. If
the collected sequences were 100% error free, then many problems would not
occur. In reality, the extraction of data by electrophoresis is a physical process
in which errors due to biochemical phenomena show up quite often. Ewing et al.
(1998); Ewing and Green (1998) show that – together with errors occurring in
the subsequent signal analysis – current laboratory technologies total an error
rate that might be anywhere between 0.1% – for good parts in the middle of a
sequence – and more than 10% in bad parts at the very beginning and at the
end. This error rate, combined with the sometimes exacerbating fact that both
DNA and RNA tend to contain highly repetitive stretches with only very few
bases differing across different repeat locations, impedes the assembly process
in a daunting way.

1.1 Genome and EST sequencing projects

Todays large scale genome sequencing efforts are a semi-industrial process
(Dear et al. (1998)) and produce enormous quantities of data. They are nearly

1also called fragments (see Myers (1995)) or readings (reads)

1

1.2. STATE OF THE ART ASSEMBLY Thesis

all based on the chain-termination dideoxy method published by Sanger et al.
(1977) in one way or another. But the gel or capillary electrophoresis used
can determine only about a maximum of 1,000 to 1,500 bases in one run, the
high quality stretch with low error probabilities for the called bases often be-
ing around the first 400 to 500 bases. Current sequencing strategies for a
larger contiguous DNA sequence (contig) or for a whole genome – ranging any-
where between 20 kilobases (kb) and 3,000 megabases (mb) – therefore require
an indirect approach. Basically the given DNA is fragmented in hundreds
or thousands of overlapping subclones (Durbin and Dear (1998)), analysed by
fluorescent-dye electrophoresis and subsequently the subclones are reassem-
bled in-silico. This computer-based reconstruction of DNA (or RNA) from frag-
ments is called “the assembly problem”.

On the way to understand all genes of an organism, it is now clear that the
genome sequence alone may not be enough, especially if the organism shows
a high degree of complexity like, e.g. in mammals. Therefore, analysis of the
genome must be supported by an understanding of its transcription – the tran-
scriptome – occurring in cells. Projects that focus on sequencing mRNA tran-
scripts are also called EST projects as they analyse Expressed Sequence Tags.
This direct RNA sequencing remains – citing Camargo et al. (2001) – the “most
definitive approach to the elucidation of transcripts”. At the same time, Bon-
field et al. (1998) conclude that “direct sequencing is required to define the
precise location and nature of any [mutational] change”, as this method en-
sures highest reliability and quality regarding the definition of single nucleotide
polymorphisms (SNPs). EST projects constitute thus a perfect opportunity to
both elucidate the transcriptome and analyse mutational polymorphisms con-
tained therein, especially when doing cross-species EST analyses as was shown
in Chevreux et al. (2004).

1.2 State of the art assembly

The sheer amount of data collected implies that the assembly itself must be
done by computer-based methods. The above mentioned error rates and repet-
itive properties of DNA require the algorithms to tolerate faults and seek al-
ternatives in a given solution space. Wang and Jiang (1994) showed that the
assembly problem – even using error free representations of the true sequence
– is NP complete. This means that the volume of data can only be assembled by
approximating strategies, relying on heuristic algorithms that are well-behaved

2

1.3. AIM OF THE THESIS Thesis

in both time and space complexity.
The evolution of assembly strategies clearly moved away from simply using

base sequences toward approaches using additional information like, e.g., cover-
age analysis, sequence orientation, quality and probability values and template
identity. A common characteristic to all existing assemblers is that they rely on
the quality values with which the bases were previously attributed. Within
this process which is named “base-calling”, an error probability is computed by
the base caller program to express the confidence with which the called base is
thought to be the true base. The positive aspect is the possibility for assemblers
to decide in favour of the best, most probable bases when a discrepancy occurs.
The negative aspects of the most widely used current base callers are 1) the fact
that base probability values sometimes cannot be computed accurately2 enough
and 2) their inability to write confidence values for optional, uncalled bases at
the same place, which would help assembly algorithms to compute better alter-
native solutions.

The common method for assembling DNA and RNA therefore consists of us-
ing fault-tolerant algorithms that produce a basic sequence which then has to
be reviewed and manually corrected by human experts, the so called “finish-
ing”. Incorrectly assembled sequences must be dismantled and reassembled at
different places. For large scale sequencing projects, this slow and very inef-
ficient method contradicts the principle of parsimony and represents the most
important bottle-neck and cause of errors, even if powerful finishing tools are
now available (see Lawrence et al. (1994); Staden et al. (1997); Gordon et al.
(1998)). But errors still happen much too frequently and especially sequencing
projects of higher organisms are affected by problems as their genomes con-
sistently contain more and longer repetitive regions that create new levels of
complexity in the assembly process. Recent studies from Cheung et al. (2003)
confirmed this by an in-depth analysis of the human genome sequence assem-
bly: as of June 2002, “1.28% of the sequences in the 3,043.1 megabases of the
genome are likely to be involved in sequence misalignment errors”.

1.3 Aim of the thesis

The essential criterion in the design of an assembler is the quality of the final
result. Although different groups may have different – sometimes arbitrary –
sets of acceptance criteria for quality aspects of assemblies, the target accuracy

2e.g. for new electrophoresis methods

3

1.3. AIM OF THE THESIS Thesis

of 1 error in 10,000 finished bases in DNA sequence set by the Human Genome
Project can be seen as most demanding, especially when assembling sequences
from higher eukaryotic organisms. An assembly system has to support this
target by making cautious use of the available data and increase automation by
reducing human involvement in correcting assembly errors. This has to happen
through ensuring a firm base and good building blocks in the beginning of an
assembly.

The aim of this thesis is therefore centred at reducing assembly errors caused
by repetitive sequences as well as increasing the reliability of consensus se-
quences derived from automatically assembled projects.

To achieve this goal, the first key point of the approach developed in this the-
sis is the usage of all additionally gathered information like, e.g., repeat tags,
template insert sizes, quality values, original signal traces, etc. as checking
mechanisms. The information is used to confirm and optimise the basic as-
sembly and to identify possibilities to discern between different occurrences of
repetitive sequences. The second key point in the algorithms designed is the
combination of the assembler with the capabilities of an automatic editor. Both
the assembler and the automatic editor are separate programs and can run
separately, but the task of assembly and finishing is so closely related that both
parts can include routines from each other (see also Pfisterer and Wetter (1999);
Chevreux et al. (2000)).

In this combined information analysis and integration process, the signal-
analysis aided assembler promises two substantial advantages compared to a
sequential-base-caller-and-assembler strategy:

1. The assembler gains the ability to perform signal analysis on partly as-
sembled data. Analysing experimental signal data at precise points with
a given hypothesis ’in mind’ helps to discern possible base caller errors
from errors due to misassemblies, especially in problematic regions like
repeats where simple base probabilities alone could not help.

2. During the assembly process, sequences in preliminary builds can be au-
tomatically edited to increase their quality if the signal data supports the
hypothesis of an error that occurred in the base calling step. The edited
sequences in turn can be used to increase assembly quality in the ongoing
assembly process.

As the underlying problem of string assembly has been shown to be NP-hard
by Armen and Stein (1995), heuristic algorithms represent the only possibility

4

1.3. AIM OF THE THESIS Thesis

to solve the challenges induced by assembly projects. This thesis presents the
developed strategy of using all available assembly data together with the major
assets of signal analysis and automatic editing as a tremendously useful and
versatile policy for improving existing heuristic algorithms.

In chapter 2, the present thesis first presents and formally defines the prob-
lems posed by sequencing and describes the reasons for the complexity of this
task. Chapter 3 presents the theory developed and the algorithms implemented
for a new type of assembler that combines – and substantially extends – the
strengths of existing assembly approaches while mimicking and automating
some assembly analysis strategies used by human experts. Methods and algo-
rithms both used in bioinformatics and developed for this thesis are described in
chapter 4, together with their advantages and disadvantages for different appli-
cations in sequence assembly. The focus is to show both theoretically and prac-
tically how relatively simple, yet well behaved and highly effective algorithms
can be used to build an assembler that handles large and complex real-world
shotgun projects. Chapter 5 presents the results obtained with the assembler
developed in this thesis in comparison with the two most widely used genome
assembly systems at the time of the study. Furthermore, results for assembly of
EST projects are presented. Conclusions of this work are presented in the last
chapter (6) together with some remarks on additional work that could further
improve the assembly system. Appendix A contains some thoughts and insights
on implementational issues gained through this research project. Appendix B
shows the documentation for the 2.2.8 version as of October 2004 for the mira3

and miraEST assembler which has an accurate description on usage modes.
The last but nevertheless important appendix 6 contains acknowledgements to
people who helped this work become a success.

In closing this introductionary chapter, it must be noted that the work pre-
sented within this thesis focuses on the assembler part of the assembler ↔
automatic editor combination. Conditions an automatic editor system has to
comply with when providing assistance to an assembler will also be explained
although detailed descriptions of the automatic editor algorithms are not sub-
ject of this work.4

3which is an acronym for Mimicking Intelligent Read Assembly
4The automatic editor is subject of a thesis to be presented by Thomas Pfisterer

5

2 Fundamentals of sequencing and
assembly - integrating biology and
computer science

“Understanding the laws of nature does not mean that we are im-
mune to their operations.” (Solomon Short)

This chapter is meant to be a short introduction to the chemical, biological
and computational aspects of sequencing and assembly. It presents and for-
mally defines the problem of genome and EST sequencing while introducing
the terminology as it is used throughout this thesis. This chapter cannot be
an exhaustive reference to sequencing methods, DNA properties or biological
background information at large, some facts have been simplified to clarify the
context. See for example DOE (1992), Bruce et al. (1994) or Klug and Cum-
mings (1996) for more advanced information.

2.1 Definitions and methods

A genome physically and chemically consists of tightly coiled strands of de-
oxyribonucleic acids (DNA) which is normally organised in a twisted double
helix. The actual information contained in DNA is encoded by four different
nitrogenous bases: Adenine (A), Cytosine (C), Guanine (G) and Thymine (T).

Definition 1 (Alphabet) An AlphabetA includes the characters needed for tex-
tual representation of DNA.

In a DNA helix, each base will always pair with its complementary base.

Definition 2 (Complement base) The complement base of Adenine is Thy-
mine, the complement base of Cytosine is Guanine. If b defines a base, b rep-
resents its complement.

6

2.1. DEFINITIONS AND METHODS Thesis

The bases are arranged along a sugar-phosphate backbone. The information
needed to create any organism is specified by the sequence of bases – and the
molecular structure defined by it – within the DNA. Refer to Bruce et al. (1994)
for more information on working mechanisms of nucleic acids in general.

Definition 3 (Sequence) A sequence S is an ordered succession of characters
from A .

As will be explained later on, extracting DNA sequence information from cells
is a tedious process involving many different steps. Each of these steps is prone
to errors. Due to these errors, uncertainties remain once a sequence has been
determined.

Definition 4 (Ax) The alphabet A exists through different representations Ax

to meet the needs of real world data sets used in assembly processes.
Ab contains only those characters that are needed to represent the discrete

DNA sequence as it is found in cells. Ab = {A, C, G, T}
An extends Ab with the character N (aNy) which shall stand for bases that

could not be determined more specifically in the analysis process. An= {A, C, G,
T, N}
Ag extends An with the gap character “∗” which implies missing bases within

a sequence S . “∗” is also sometimes denoted as padding character. Ag= {A, C, G,
T, N, ∗}

Please note that Ab ⊂ An ⊂ Ag

Beside these alphabets, a lot of other different alphabets have been created to
meet the needs of specific employments, from which the IUPAC (International
Union of Pure and Applied Chemistry) code is the most notable. The IUPAC
code describes any uncertainty with one character.1

Definition 5 (Length of a sequence S) The length of a sequence is the num-
ber of characters ∈ A of a sequence S . The length is denoted by ||. Please note
that 0 ≤| S |< ∞

With the help of the definition for the length of a sequence, the raw definition
of a sequence can be refined.

1e.g., the symbol ’W’ for an uncertainty between A (Adenosin) and T (Thymin)

7

2.1. DEFINITIONS AND METHODS Thesis

Definition 6 (Sequence Sx) A sequence Sx is an ordered succession of charac-
ters from Ax.

Sx =
(

sx
1 , . . . , sx

n

)
with n =| Sx | and sx

i ∈ Ax

Definition 7 (Reverse complement) The reverse complement S of a sequence
S is constructed by writing the sequence S backwards and replacing the bases by
their complement. The special characters “∗” and N do not get replaced.

Sx =
(

sx
n, . . . , sx

1

)
The length of DNA sequence of organisms present on earth ranges from a

few hundred kilobases up to several gigabases. For example, the bacterium He-
licobacter pylori 26695 (GenBank accession number AE000511) has 1,667,867
bases (1.7 megabases) in its form as completed on September 7, 2001. In con-
trast, the human genome consists of approximately 3 gigabases.

But the gel or capillary electrophoresis technologies used to analyse DNA
sequences can determine only about a maximum of 1,000 to 1,500 consequent
bases, the high quality stretch with low error probabilities for the called bases
often being around the first 400 to 500 bases. The problem to be solved is to find
a method that allows the sequencing of long genomes, with the limiting factor
that no subsequence to be analysed may be longer than 1 to 1.5kb.

Definition 8 (Shotgun method) The shotgun method consist of cloning and
analysing short overlapping DNA fragments randomly generated from a genome
(see also DOE (1992)) and subsequently reassembling back in silico the experi-
mentally gained sequences through computational methods.

A simplified overview on the principles of the shotgun methods is given in fig-
ure 1. The DNA to be sequenced is first purified and amplified through cloning
and then randomly fragmented into small parts, for example through sonica-
tion or the use of restriction enzymes. The fragments, also called inserts, are
then sorted by size into so-called clone libraries of different sizes. For example,
a genome sequencing project might use four clone libraries, where the frag-
ments of the first library are approximately 2 kilobases in size, the second has
5 kilobases, the third 10 kilobases and the last 50 kilobases.

With the sensitivity levels of current sequencing technology, any type of nu-
cleic acid sequence that is to be sequenced must first be amplified prior to its
determination. This is done by inserting the fragment (insert) into a so-called

8

2.1. DEFINITIONS AND METHODS Thesis

?

Computational
reconstruction

Multiplication

Fragmentation

Figure 1: Simplified shotgun fragmentation sequence analysis. A DNA is
cloned and fragmented. Fragments too long for electrophoresis are filtered, the
remaining fragments are sequenced. The original DNA sequence must be re-
constructed through computational methods by analysing overlapping regions
between fragments. In some cases, no fragment covers certain parts of the orig-
inal DNA sequence, which results in a gap.

cloning or sequencing vector and then inserting the resulting construct (a plas-
mid) into host cells – e.g. a bacterium like E. coli – for amplification as is shown
in figure 2.

Definition 9 (Sequencing or cloning vectors) Vectors are small fragments
of DNA – often derived from viruses or bacterial phages – that have the intrinsic
capability to replicate themselves and the sequence that is eventually attached to
them. The payload sequence is also called “insert”, its length “insert size”.

The construct plasmid is then introduced into a host cell , where it replicates
together with the cell.

Once each vector/payload construct is amplified enough, a labelled polymer-
ase replication process is started in the known sequencing vector part in for-
ward and reverse direction as shown in figure 3. When using the chain ter-
mination dideoxy method published by Sanger et al. (1977), the replicates are
terminated by dideoxynucleotides labelled with a fluorescent dye, a different
dye for each terminating base. Each replicate will terminate at a different po-
sition of the fragment as the dideoxynucleotide prevents the polymerase from
continuing the synthesis.

The combined replicates are then separated according to length in a gel or
capillary electrophoresis process. The identity of a terminating base from a
particular replicate can be detected by a two- or four-channel laser scanner as

9

2.1. DEFINITIONS AND METHODS Thesis

+

Target DNA

Sequencing vector

Bacterial host

Bacterial genome

Plasmid

Figure 2: Amplification of DNA through vectors. Small DNA fragments can
be easily amplified by attaching it to a vector sequence. The vector/payload
construct is called plasmid and is inserted into a bacterial host, the vector gives
it the ability to be replicated together with its host.

Target DNA

Sequencing vector cut site

Sequencing vector

replication start site
Forward polymerase

replication start site
Reverse polymerase

reverse read
Sequence of

Sequence of
forward read

Figure 3: Simplified illustration of location of forward and reverse reads on
plasmids. Amplified plasmids are extracted from the host cells and linearised.
Then a chain-termination dideoxy polymerase reaction produces fluorescent la-
belled replicates of different sizes in forward and reverse direction that can be
analysed by electrophoresis.

10

2.1. DEFINITIONS AND METHODS Thesis

Figure 4: Example for trace data with the four gel lanes superposed.

peak a in the fluorescence signal in the base specific channel. As short repli-
cates will travel faster through the electrophoresis medium, the order of the
replicates that pass the scanning mechanism also determines the order of the
bases in each insert and thus the order of bases in the DNA fragment sequence.

Definition 10 (Trace) The DNA signal gained through electrophoresis is called
a trace. Each base (A, C, G and T) has its own signal trace, but they are fre-
quently shown superposed as shown in figure 4.

Although trace signals are the most accurate representation of the sequences
that have been analysed (see figure 4), they tend to be impractical as a basis
for upcoming computational steps. Further on, genomes are a discrete ordered
sequence of the four nucleotide bases. The trace signals must therefore be anal-
ysed to extract the original sequence.

Definition 11 (Base-calling) Base-calling is the process by which a sequence
Sb represented by a signal trace T is deduced from the signals. Usually, the
alphabet An has to be used to generate a sequence Sn as the trace data is not
always unequivocal.

Please refer to section 2.2 for a more in-depth discussion on the origin and
the problems caused by wrong base calls.

Definition 12 (Read) A read is composed by the sequence Sn and the trace
data from which it has been inferred. Additionally, data gained by preliminary
analysis of the sequence – like sequencing vector pollution – or data from other
sources – like chemistry and gel used – can augment the information present.

The read sequences extracted from the forward polymerase replication (called
forward reads) and the reverse polymerase replication (called reverse or comple-
ment reads) are all contained in the original DNA sequence of interest and are

11

2.1. DEFINITIONS AND METHODS Thesis

supposed to cover it completely in an overlapping way multiple times. But this
is a working hypothesis only, based on stochastic assumptions. Although the
fragments are assumed to be distributed uniformly along the DNA sequence
(Idury and Waterman (1995)), chemical properties of biological sequences occa-
sionally introduce a bias. In real-world projects, the reads will probably leave
some gaps in the DNA sequence to be analysed, sometimes due to chemical
properties of the sequence at this place (like coiling of DNA), sometimes just
due to ’bad luck’. To reconstruct the original DNA sequence by computational
means, the relative order and orientation 2 of the fragments must be deter-
mined. This inference is done using alignment algorithms.

Definition 13 (Alignment) An alignment is a 2-dimensional matrix formed
by k sequences Sx.

L =

 Sx
1
...
Sx

k

 (2.1)

which can also be written as

L =

 s11 . . . s1n

...
sk1 . . . skn

 (2.2)

It is clear that this definition of an alignment implies that all contained se-
quences Sx must have the same lengths. Theoretically, one could use the gap
character (“∗”) to pad the sequences to the left and/or to the right and bring
them to the desired lengths. But a “∗” implies missing characters and is often
seen as an error of some sort. This is clearly not the case for shotgun reads, as
bases to the left or to the right of a sequence have simply not been determined
in the lab.

Definition 14 (Endgaps) Endgaps are special characters that may be present
at the start or at the end of a sequence Sx (but never within), to increase formally
the length of a sequence without changing the contextual information contained
in the sequence.

2the experimentally gained sequences have a 50% chance of being in reverse complement ori-
entation

12

2.1. DEFINITIONS AND METHODS Thesis

The alphabetsAx of the sequences Sx are therefore extended by the∇character.

AB = Ab ∪ {∇} = {A,C, G, T,∇} (2.3)

AN = An ∪ {∇} = {A,C, G, T,N,∇} (2.4)

AG = Ag ∪ {∇} = {A,C, G, T,N, ∗,∇} (2.5)

Please note that AB ⊂ AN ⊂ AG

Normally, in alignments the∇character is often represented by “.” (point) or “
” (blank). As this may lead sometimes to confusion for printed text, the end-gap
character will be represented by ∇in plain text and with a point or a blank in
alignments. Please also note that

∀
sX
i ∈ SX = ∇

 ∀
j < i

(
sX
j = ∇

)
and

∀
sX
i ∈ SX = ∇

 ∀
j > i

(
sX
j = ∇

)
In plain words: a ∇ character may not be enclosed by characters from Ax.

Theorem 1 Without further proof, it will be assumed that every sequence Sx

can also be written as ∇kSx∇l with ∇ being present k and l times at the start
respectively end of a sequence.

∇kSx∇l = ∇iSx∇j for any i, j, k, l ∈ N0

E.g.: ACGT = ACGT∇ = ∇∇∇ACGT∇

Any sequence can therefore be brought to a desired length to fit into an align-
ment.

Definition 15 (Extended sequence length) The extended sequence length is
written ||SX || and calculated by counting every character SX ∈ AX .

E.g.: SX = ∇∇∇ACGT∇
| SX |= 4
||SX ||= 8

As can be seen in equation 2.2 on page 12, each column in an alignment forms
a k-tuple over the alphabet AX . Two important numbers can be extracted from

13

2.1. DEFINITIONS AND METHODS Thesis

Table 1: A simple weight matrix example. Each match of two bases ∈ Ab

is scored with the value 1, mismatches with -1. Gaps within a sequence (∗)
penalise the alignment with -2.

A C G T ∗
A 1 -1 -1 -1 -2
C -1 1 -1 -1 -2
G -1 -1 1 -1 -2
T -1 -1 -1 1 -2
∗ -2 -2 -2 -2 0

this k-tuple: coverage and column score.

Definition 16 (Coverage) The number of characters ∈ Ax in a column of an
alignment is called coverage. From the biological point of view, the coverage
describes the number of times a given (sub-)sequence of DNA or RNA was se-
quenced. Please note that endgaps (∇) do not count as valid coverage characters:
they are used as such only to pad shorter sequences into longer alignments. The
characters N and ∗, however, imply a “problem” of some sort in the base-calling
process, but otherwise sequence data is available and therefore to be counted as
coverage.

A scoring function is needed to asses the similarity of two or more aligned
sequences, as the ultimate goal is to optimise the alignment.

Definition 17 (Weight or scoring matrix) A weight matrix (also called scor-
ing matrix) is a 2-dimensional matrix that maps pairs of characters to a numeric
value. The indices can be from any alphabetAand the elements represent a com-
parative score.

Definition 18 (Score of two bases) Given a weight matrix W and two bases
a and b, the score of these two bases is given by score(a, b) = Wab. In case W is
symmetrical, then obviously Wab = Wba.

An example for a simple weight matrix W is given in table 1. Using this
weight matrix, the score of an entire column can be calculated.

Definition 19 (Column score) The column score is calculated by the score of
the permutation of all elements in a column. The score of a column having k

elements is
k∑

j=1

k∑
l=j

score(sj , sl)

14

2.1. DEFINITIONS AND METHODS Thesis

As an alignment consists of several columns, a method is needed to asses the
quality of the total alignment using the column scores as reference.

Definition 20 (Alignment score) An alignment score is the sum of all col-
umn scores in the alignment. An alignment having ||SX

k || columns calculates
its alignment score as follows:

||SX
k ||∑

i=1

k∑
j=1

k∑
l=j

score(sji, sli)

Definition 21 (SCS alignment) The alignment represented by a matrix of k

given sequences for which the alignment score is maximal is called ”Shortest
Common Superstring” (SCS) alignment.

The shortest common superstring problem with strings containing no errors
is NP-hard (Armen and Stein (1995)). It is a reasonable assumption that the
same problem with strings (reads) containing errors cannot be simpler although
this has not been proven formally.

Definition 22 (Global alignment) Global alignments optimise the score of an
alignment over the full length of k sequences, the use of the ∇character is pro-
hibited, the length of the alignment is max

k (| S k |). Global alignments – also
known as Needleman-Wunsch alignments – are thus most appropriate when the
sequences are known to be similar over their entire length.

E.g.: The two sequences TACGTCAATTAGATCTACT and CTACTGTA could be
globally aligned like this:

TACGTCAATTAGATCTACT

C*T*A*CT*G*TA**
although this does not seem to make much sense as these two sequences are

obviously not very similar when considering the entire length. For cases like
this, local alignment methods are much more appropriate.

Definition 23 (Local alignment) Local alignment methods give the possibil-
ity to align k sequences over common subsequences. The ∇ character is needed
to bring the sequences to the same length. Local alignment – also known as
Smith-Waterman alignment – is typically used when when nothing is known in
advance about the similarity of the sequences being aligned. It is also used when
it is suspected that the sequences may overlap only partly.

15

2.1. DEFINITIONS AND METHODS Thesis

E.g.: The two sequences from the example above (TACGTCAATTAGATCTACT
and CTACTGTA) can be locally aligned like this,

TACGTCAATTAGATCTACT...

..............CTACTGTA

Now that alignments have been defined, the problem is still to calculate the
alignments for a set of k given sequences. This problem has been solved in the
1970s and 80s by Needleman and Wunsch for global alignments by applying dy-
namic programming algorithms. Dynamic programming computes a sequence
comparison and sequence alignment by comparing shorter subsequences first,
so that their score can be made available in a table for the next longer sub-
sequence comparison. Smith and Waterman extended this technique to local
alignments.

Dynamic programming algorithms that locate optimal alignments of two se-
quences are central techniques for the comparison of biological sequences and
have been extensively studied for the case of k = 2 sequences.

Definition 24 (Optimal alignment by dynamic programming) The best
score for an alignment between k sequences is determined by calculating the
k-dimensional alignment matrix H|S2|−1,...,|Sk|−1. Starting with H0,...,0 and
working forwards through the matrix in some topological order (line by line
or row by row), the value of each cell Hi1,...,ik is calculated by scoring the
predecessor cells with the value of the sequence to be compared and the “∗”
character by using the weight matrix W and take the maximum value from the
computation.

Equation 2.6 shows an example for a general 2-dimensional matrix H, see
also figure 26 on page 58 for the banding specialisation of the algorithm.

Hi1,i2 = max

Hi1−1,i2−1 + WS1

i1
,S2

i2

Hi1,i2−1 + WS1
i1

,∗

Hi1−1,i2 + W∗,S2
i2

0

 (2.6)

To calculate the value of Hi1,i2 , it is only necessary to know the contents of
the three predecessor cells (Hi1−1,i2−1,Hi1,i2−1,Hi1−1,i2).

While the multiple alignment problem is NP complete in the number of se-
quences, there is a well-known O(nk) dynamic programming algorithm for com-
puting alignments among k sequences of average length n (Smith and Water-
man (1981)). The problem can be solved by simply extending the dynamic pro-

16

2.2. ERROR TYPES AND RATES Thesis

gramming recurrence for the basic problem: computing the values of matrix H

in some topological ordering requires a total relative time of

O(
k∏

i=1

ni) = O(nk)

steps, where
n = max{ni : i ∈ [1, k]}

While the extension to multiple sequences is conceptually quite straightfor-
ward, the obvious algorithm to compute the exact solution takes an amount
of time exponential in k. It is therefore generally impractical in real world
problems for k > 3 (Myers (1991)) sequences and – even when restricting the
computation space by some means – certainly so for k > 4 (Gotoh (1993)).

2.2 Error types and rates in DNA sequencing

2.2.1 Errors of the data acquisition process

The DNA sequence gathered through experimental process is gained through
an examination of the fluorescent-dye intensity signal that is output by auto-
matic sequencing machines. Even with the newest generation of sequencers,
raw sequence data obtained from them is – by all means – everything but
trustworthy in its entirety. Inevitable artifacts degrade the quality of the se-
quences obtained and are caused by experimental as well as systematic factors.
Chromatography is a chemical process and thus subject to stochastic and non-
stochastic oscillations, which can cause sub-optimal signal quality. Errors in
a determined DNA sequence can be caused by flaws in the translation opera-
tions of the electrophoresis signal or quirks that arose during the experiment
itself. This becomes visible in the wide diversity of data that is obtained even
when using a single chemistry type, let alone different ones: under- and over-
oscillations of the signals, unseparated curves (compression artefacts), and sig-
nal peaks or dropouts are frequent. Incorrect signal analysis raises errors in
the base calling process of the signals and constitutes a limiting factor in the
automation of assembly processes.

Depending on a multiple factors – ranging from clone preprocessing and dif-
ferent dye-labelled terminators (or primers) to the type and length of gel used
during electrophoresis (see also Lario et al. (1997); Rosenblum et al. (1997))
– the quality of the data gained along a single sequence substantially varies.

17

2.2. ERROR TYPES AND RATES Thesis

Figure 5: Example for bad quality data at the start of an electrophoresis gel
or microcapillary trace. The clutter present at the very start of the trace is the
result of instrument calibration.

Figure 6: Good signal quality amidst a trace. The data has generally less than
one error in 100 or even 1000 bases, although ambiguities do arise sometimes.

Current laboratory techniques can examine nucleotide sequence fragments be-
tween 600 and 1300 bases long. In most cases there is a typical curve of error
rates to be observed (see Ewing et al. (1998); Richterich (1998); Lipshutz et al.
(1994); Engle and Burks (1993, 1994)): it starts with a small stretch of low-
quality bases (error rates between 3% and 8% for the first 50 to 70 bases, see
figure 5) followed by a stretch of high quality data (error rates ≤1% to 2% for
the following 600 to 800 bases in good traces3, figure 6), although it is neverthe-
less possible for low-quality data to be present amidst a high quality stretch. As
the signal-to-noise ratio degrades towards the end of of a trace, the base quality
starts to deteriorate rapidly after a certain time with error rates ranging from
2% up to over 10% and to 20% in the tail of the sequence like shown in figure 7.

Basically, there are three types of errors introduced into the data by elec-
trophoresis and subsequent base-calling: insertions, deletions and mismatches.
Insertions are wrongly called bases at places were there are none, deletions are

3Mean length of useful sequences gathered on ABI 3730 machines at The Institute of Genomic
Research (TIGR) in 2003, pers. communication from Bill Niermann (Investigator at TIGR) in
April 2004

18

2.2. ERROR TYPES AND RATES Thesis

Figure 7: Example for bad signal quality towards the end of a trace. A low
signal-to-noise ratio and unseparated curves cause high error rates.

bases that were not called in a sequence and mismatches represent wrongly
called bases.4 These types of errors can be reduced by using improved chem-
istry (Lario et al. (1997); Rosenblum et al. (1997), by applying image processing
algorithms (Sanders et al. (1991)) or by using different base calling algorithms
(Berno (1996)).

Having a viable numerical estimate of the base quality has been a major
advance achieved by Ewing et al. (1998) and Ewing and Green (1998) who pre-
sented an improved base caller that also gives probability values for the called
bases expressed as confidence estimates.

Definition 25 (Base error probability) The value p with 0 ≤ p ≤ 1 attached
to a base call describes the probability with which the base caller has produced
a wrong base call, where a value of 1 represents a certain wrong call.

It must be noted that to give a correct estimate of the base probability, algorithm
for computing the value of p often analyse a whole range of trace characteris-
tics like shape, peak distances and other parameters gained through statistical
analysis of a several million base calls.

The PHRED program was the first to transfer base error probabilities into a
log-transformed value – also known as quality – to each called base.

Definition 26 (Base quality) The quality of a base is assigned to be q = −10 ∗
log10(p) where q is the quality and p the error probability.

Thus a quality of 40 would resort to the error probability of approximately 1
error in 10,000 bases.

4insertions and deletions are commonly referred to as indels

19

2.2. ERROR TYPES AND RATES Thesis

2.2.2 Errors due to biology

While errors due to the data acquisition process itself are problematic enough,
the processes that precede it involve multiple steps of biological handling and
add an additional level of complexity to the task.

One of the larger inconveniences is due to the method used to amplify small
DNA clones which consist of adding an amplification vector and inserting the
resulting construct into host cells (see also section 2.1). This vector/payload con-
struct leads to an unpleasant consequence: any DNA sequence determined is
likely to contain some part of the sequencing vector itself at the start – and
sometimes the end – of the determined sequence. These stretches must of
course be electronically removed as they do not belong to the target DNA that
is to be sequenced. Unfortunately, the vector sequences are at the very front
and rear of the sequence, which are the most error prone parts. Due to these er-
rors, simple pattern matching algorithms often fail to recognise the sequencing
vector completely.

The self-replication of the host-cells itself induces two further kind of errors:
1) errors in the base replication itself, which leads most of the time to small
point mutations (SNPs, Single Nucleotide Polymorphisms) or 2) errors on a
larger scale where the vector can “loose” its sequence payload, recombine with
other plasmids or even recombine with some sequence parts of the host cell.

Definition 27 (Single nucleotide polymorphism) A SNP (spoken: “snip”)
is a sequence variation in DNA or RNA where exactly one difference exists be-
tween otherwise two identical sequences. This difference can be either 1) a base-
change, which is an exchange of a base ∈ Ab with another base ∈ Ab, or 2) an
“indel”, which is an insertion or deletion of a single base in one of the sequences.

Please note that SNPs can observed both because of errors in the base-calling
process and because of real sequence differences.

While infrequent errors on the SNP level do not pose a particularly diffi-
cult problem, a non-recognised recombination of the vector with any type of
sequence from the replication host (a contamination) leads to completely wrong
results in the downstream sequence analysis. Although the awareness to the
problem of contamination has increased in the last years in the scientific com-
munity, a quick search in public databases for example still reveals an uncanny
number of E. coli or known vector fragment stretches in sequence clones that
were taken from human or rat chromosomes.

20

2.3. PECULIARITIES OF EST SEQUENCING Thesis

Another common type of biological problem due to random recombination of
the vectors with other sequences is called chimera.

Definition 28 (Chimera) Chimeras are clones that contain adjacent DNA
stretches that are normally located at two very different sites within a genome
that is to be sequenced.

Chimeras are formed due to spontaneous recombination during the self-repli-
cation of clones, the product of this recombination then hosts adjacent DNA
subsequences that do not reflect reality of the original sequences. If chimeras
are not recognised, this also can lead to wrong interpretation of the sequenced
organisms.

2.3 Peculiarities of sequencing expressed sequence tags
(ESTs)

Genomes are not the only nucleotide sequences in a cell that can be subject of
sequence analysis. The second type of sequencing and subsequent assembly
projects is called EST sequencing. This section gives a short overview on why
and how it differs substantially in some critical points from genome assembly
projects.

2.3.1 Biological background

The overall gene architecture in eukaryotic genomes and its recognition by com-
putational means is complicated by the existence of the so-called exon-intron
structures. This is exemplarily shown in figure 8. Genes are not positioned
continuously at one location on the genome, but single parts of the genes (ex-
ons) are interrupted by intergenic regions (introns) which have the sometimes
respectable size of several kilobases.

The cell however does recognise the correct gene structures on its genome as
in the production path leading from the information contained in the genome
to the final product – the protein – the first step is always the translation of
the DNA into a messenger-RNA (mRNA) that conveys the information from the
genome to the protein production facilities (ribosomes). The mRNA sequence of
a cell is therefore of particular interest to scientists as it reflects both the genes
that are currently being used (expressed) by the cell as well as the expression
level of the expressed genes.

21

2.3. PECULIARITIES OF EST SEQUENCING Thesis

� � �� � � � � � � � � � � � � � �� � � � � � � � � � � � �� � � � �� � � �

Exons

Introns

GenomeGenome

Figure 8: Simplified example for a gene architecture in eukaryotic genomes. A
gene can be split in several parts (exons) that are located at different positions
on the genomes. The intergenic regions (introns) can have several kilobases in
length.

Definition 29 (Expressed Sequence Tag (EST)) An Expressed Sequence Tag
(EST) is a small portion of the DNA – usually a gene – that has been transcribed,
i.e. expressed, into mRNA and then sequenced.

The idea behind sequencing ESTs is the assumption that it is much easier to
find genes in a whole genome when looking directly at the transcribed mRNA
than to find them computationally in complex genome structures. Depending
on the size of the gene and whether both sides of the genes are sequenced, the
ESTs may or may not cover the entire gene. With current technology, genes
up to 1200 to 1400 bases have a good chance to be completely covered when a
two-sided sequencing strategy is used.

A further complication of eukaryotic genomes is given by the fact that the
DNA is first transcribed into a pre-RNA that is composed of both exons and
introns. In a subsequent step, the introns are then spliced (removed) away to
form the mRNA. In this process which is not fully understood yet, different
combinations of exons of a gene can also be removed. This leads to inherently
different mRNA variants coming from one gene and subsequently also to differ-
ent proteins. An example for this is shown in figure 9. Although this alternative
gene splicing is now commonly seen as to be relatively frequent and not occur-
ring haphazardly, the exact reasons and mechanisms for this are currently not
completely elucidated. Citing Heber et al. (2002) “Recent studies indicate that
alternative splicing is more frequent than previously thought and some genes
may produce tens of thousands of different transcripts.”

2.3.2 Implications for assembly projects

Biology – and the phenomena encountered within – sets the boundaries for both
for genome and EST sequencing projects. While most of the aspects addressed

22

2.3. PECULIARITIES OF EST SEQUENCING Thesis

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

� � � � �
� � � � �
� � � �
� � � �

� � �
� � �
� �
� �

� �� � �	�	�	�	�	�	�	�	�	�	�	�	�
	
	
	
	
	
	
	
	
	
	
	
 � � � �� � � �

 � � � � � � � � � � � � � � �� � � � � � � � � � � � �	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	� � � � �� � � �

mRNA splice variant 2

mRNA splice variant 1

Figure 9: Simplified example for gene splice variations in eukaryotic genomes.
During the splicing of the pre-mRNA into the final mRNA, introns and some-
times also some exons are removed from the pre-mRNA. The removal of exons
leads to different gene transcript variations which are also called splice variants
or splices.

earlier in this chapter like, e.g., data quality and coverage, are as important
for genome assembly projects as for EST projects, two other characteristics in-
fluence the type of results or the quality of the computational EST assembly
process in an important way: 1) the extremely wide range encountered in the
abundance of mRNA transcripts of different genes, and 2) the additional com-
plexity brought in by alternative splicing of genes.

Abundance of mRNA transcripts

Collecting mRNA samples for EST projects is one of the most critical tasks
as the expression of genes varies over several orders of magnitude. In fact,
genes are not evenly expressed in cells, neither through time nor tissue nor
quantity. This differential expression is reflected in the abundance of specific
mRNA transcripts in a cell.

For example, cytochromes are a family of electron carrying pro-
teins and constitute an important part of the respiratory chain
in both prokaryotes (bacteria) and eukaryotes (higher organ-
isms). Their central role in the metabolism makes them at the
same time both ubiquitous in transcripts and closely related
within gene families of cells. See Bruce et al. (1994) for more
information.

In contrast to that, the spo0B gene of Bacillus subtilis for ex-
ample is required to initiate the so-called “stage 0” sporulation
of the bacterium, but it needs to be expressed only at very low
levels (Asayama et al. (1998)). Even for bacteria which initiate

23

2.3. PECULIARITIES OF EST SEQUENCING Thesis

the sporulation, only very few transcripts of this gene can be
found.

Mostly due to cost constraints, not all of the tens of thousands of transcripts
present at any time in a cell can be taken to a sequencing process. This in turn
induces the reasoning that a naive sampling process – for example with the
Monte-Carlo method – of the mRNA-transcripts present in a cell would there-
fore almost certainly sample many identical transcripts of highly expressed
genes. Many transcripts with low abundance, however, could fall through the
raster scan and not be represented at all in the samples.

In consequence, a biological “normalisation” process can be implemented to
pre-select clones containing a representative subset of mRNA-transcripts. Al-
though further adding to laboratory cost, this process is both needed to increase
the discovery yield on genes (see also Schuler (1997)) and to alleviate the com-
putational complexity for the assembly process (see also section 4.9.1 of this
thesis). On the downside, normalised EST projects do not allow anymore quan-
titative studies of gene transcriptions.

Please refer to Klug and Cummings (1996) for more information on the selec-
tion of clones of the transcript normalisation process.

Splice variants

Splice variants add a further level of complexity to an assembly process. Vari-
ants that are present only in single copy numbers within clone libraries are
computationally indistinguishable from chimeras. In fact, in this case they are
completely indistinguishable even for human researchers when prior knowl-
edge – like for example the underlying genome sequence – is not available.
However, chimeras are created completely randomly while splice variants are
not. A splice variant can thus be seen as validated once it is observed more than
in a single sequence copy.

Hence, the additional complexity that splice variants bring into an assembly
is mostly not related to computational methods, but to the interpretation of
results that include one-time observations of certain splice variants.

24

3 Assembly strategies

“If it were easy, it would have been done already.” (Solomon Short)

Referring to Dear et al. (1998), a “sequence assembly is essentially a set of
contigs, each contig being a multiple alignment of reads”.1 Most unfortunately,
the underlying problem of string assembly as a variant of the shortest com-
mon superstring problem has been shown to be NP-hard by Armen and Stein
(1995) so that heuristic algorithms represent the only possibility approach this
problem.

According to Chen and Skiena (2000), many assemblers have similar funda-
mental designs but differ substantially on important engineering issues. This
chapter shortly summarises the most important strategies existing as of this
writing. It then outlines the global concept developed in this thesis to address
weak points in current strategies, that is, to tackle the goal of producing better
consensus alignments by correctly discerning repeats set for this thesis.

3.1 Short overview of existing strategies

From the very beginning (Peltola et al. (1984); Staden (1984)) up to recent pub-
lications (Jaffe et al. (2003)), a number of different strategies have been pro-
posed to tackle the problem. They range from simple greedy pairwise align-
ments – sometimes using additional information (Dardel (1985); Johnston et al.
(1986)), sometimes using a whole set of refinements (Huang (1996); Huang and
Madan (1999)) – to weak AI methods like genetic algorithms (Parsons et al.
(1993); Notredame and Higgins (1996); Zhang and Wong (1997); Notredame
et al. (1998)).

There are nowadays mainly three different existing approaches for the ’sim-
ple’ assembly of sequences: (i) the iterative, (ii) the quality based one-step ap-
proach and (iii) Myers scaffolding approach. The first type of assembly is essen-
tially derived from the fact that the data analysis and reconstruction approx-
imation algorithms can be parametrised differently, ranging from very strict

1The term contig is derived from “contiguous sequence”

25

3.1. EXISTING STRATEGIES Thesis

assembly of only the highest quality parts to very ’bold’ assembly of even low-
est quality stretches. An assembly starts with strictest parameters, having the
output edited manually (by highly trained personnel) or by software and then
the process is reiterated with less strict parameters until the assembly is fin-
ished or the parameters become too lax (see figure 10). The second approach has
been made popular by the PHRAP assembler presented by Phil Green2. This
assembler uses low and high quality sequence data from the start and stitches
together a consensus by using the highest quality parts of an assembly as ref-
erence, giving the result to a human editor for finishing (Gordon et al. (1998)).
For the third approach, Myers (1999) presented first results of the bridge build-
ing strategy for whole genomes, where contigs are arranged in a process called
scaffolding. This strategy relies first on a high coverage sequencing of a genome
with approximately 12-fold coverage in average, but ideally not less than 7-fold
coverage. The clones are prepared in a mixture of different insert sizes between
2 kilobases (kb), 5kb, 10kb, 50kb and 100kb and additionally each clone is se-
quenced from both ends (also called dual-ended or double-barreled sequencing).
The probable relationship of two sequences of a clone (a mate-pair), together
with an hardware supported all-out comparison of each sequence against each
other, is used to build a read framework of the contig before the sequences
are assembled together. Contigs are subsequently arranged in a scaffold, their
order is determined by mate pairs of reads which bridge the sequence gaps
between the contigs. One important aspect is the fact that repeats in the se-
quences are masked prior to the assembly in a process called fuguization3 by
Bailey et al. (2001).

A common characteristic to most existing assemblers from category (i) and
(ii) is that they rely on the quality values with which the bases have been at-
tributed by a base caller. Within base-calling process, an error probability is
computed by the base caller to express the confidence with which the called
base is thought to be the true base. The positive aspect of strategies relying on
base qualities is the possibility for assemblers to decide in favour of the best,
most probable bases when discrepancies between reads occur. The negative as-
pects of current base callers are 1) their inability to write confidence values for
optional, uncalled bases at the same place and 2) the fact that base probabil-
ity values sometimes cannot be computed accurately enough.4 The scaffolding

2PHRAP as acronym for PHils Revised Assembly Program, see also http://www.phrap.org/
3this refers to the rather compact genome of the puffer fish (Fugu rubripes) which is largely

devoid of large copy repeats.
4e.g. for new electrophoresis methods

26

3.1. EXISTING STRATEGIES Thesis

Reads ContigsAssembly Validation

Re−Para−
metrisation

Contig
Join/Break

Base editing

Figure 10: Conventional assembly has a high level of human interaction (area
in the triangle). The thickness of the arrows represents the relative number of
times a certain action has to be performed.

approach relies on hardware acceleration of certain operations5 and the prob-
lem of repetitive sequences has empathically been taken out from the assembly
algorithm, leaving only ’clear’ and ’relatively simple’ reads to assemble.

A special case of assemblers are constituted by “assemblers using assem-
blers”: programs that try to address the shortcomings of different assemblers
by combining them. Chen and Skiena (2000) presented a case study in genome-
level fragment assembly in which they compared design, issues and results of
4 different assemblers. They found that the contigs formed by the different as-
semblers were sufficiently different to justify running multiple assemblers for
comparison in the finishing stage of a project. Wang et al. (2002) demonstrated
with RePS (REpeat-masked Phrap with Scaffolding) a package that constructed
contig scaffolds using clone-pair information and assemblies made with the
phrap program in the finishing phase. Other finishing approaches like the

5Specialised hardware for this type of operations starts approximately at EUR 500,000

27

3.2. DEVELOPING A NEW STRATEGY Thesis

Contig
Join/Break

Validation

Base editing
Re−Parametrisation

Automatic
EditorAssembler

Reads Contigs

Figure 11: Using an integrated assembly and editing concept transfers a sig-
nificant portion of the work to automated algorithms, leaving only non-standard
problems to the human finisher (area in the hexagon).

prokaryotic genome assembly assistant system (PGAAS) developed by Yu et al.
(2002) try to confirm the order of contigs and then fill remaining gaps through
peptide links obtained by searching contig ends against protein databases with
BLASTX.

3.2 Developing a new strategy

The development of a new type of assembler was started in 1997 at the DKFZ
Heidelberg (German Cancer Research Center). The assembly strategy was
conceived from the very beginning to combine and substantially extend the
strengths of both traditional approaches that existed at this time ((i) and (ii),
mentioned in the previous section) and reproducing assembly analysis strate-
gies done by human experts (see figure 11). An important criterion in the design
of this assembler is the quality aspect of the final result: the assembler starts
only with the stretches of DNA sequences marked as ’high’ or ’acceptable’ qual-
ity, from which it selects the best to start an assembly. These high confidence
regions (HCR) ensure a reliable base and good building blocks during the as-
sembly process. Lower quality parts (low confidence regions, LCR) can be used
later on if needed.

28

3.2. DEVELOPING A NEW STRATEGY Thesis

3.2.1 Tackling misassemblies

A multi-phased concept has been worked out to have the assembler perform the
difficult task of optimal shotgun sequence alignments. Different authors have
proposed different sets of acceptance criteria for the optimality of an alignment
(an overview is given by Chan et al. (1992)). Traditionally (Myers (1995)), ”the
objective of this [assembly] problem has been to produce the shortest string
that contains all the fragments as substrings, but in case of repetitive target
sequences this objective produces answers that are overcompressed.”

Overcompression can be compensated in part by using special cloning and
sequencing techniques like taking different clone template insert sizes and us-
ing this information for a pre-assembly coverage analysis like it was done for
the sequencing of the human genome by Celera company (Venter et al. (2001)).
However, not all genomic or EST sequencing projects use this technique. Fur-
thermore, although EST clone library projects can use dual end clone sequenc-
ing techniques, this information is of little help as mRNAs rarely surpass a few
thousand bases in length. To make the matter worse, certain genes – or even
complete gene families – in non-normalised EST clone libraries can be dispro-
portionally expressed and sequenced more often than others (e.g. cytochromes).
This results in more mRNA clones of these genes and thus more sequence frag-
ments of these sequences.

Searching alignments by suffix trees and analysing the trees to deduce possi-
ble repeat resolving strategies was discussed several times in the past. But, as
Ma et al. (2002) noted, suffix tree approaches suffer from two main problems:
they are not efficient in handling mismatches and suffer from large space re-
quirements. The later problem is gradually being addressed by more efficient
algorithms like MUMmer2 and NUCmer (Delcher et al. (2002)) and – trivial but
still important to note – technology advances that nowadays allow relatively in-
expensive computers to have several gigabytes of memory.

Another method to handle repeats consists of reducing the fragment assem-
bly problem to a classical variation of the Eulerian superpath problem (see
Pevzner and Tang (2001)) which was extended in Pevzner et al. (2001) to use
template insert size information6 generated by clone-end sequencing. Still other
methods like the one by Otu and Sayood (2003) used a very different strategy
with divide-and-conquer approach by computing average mutual overlap in-
formation in their fragment assembly algorithm to simultaneously solve the
overlap, layout and consensus phases of an assembly.

6which they call “double-barreled data”

29

3.2. DEVELOPING A NEW STRATEGY Thesis

Sequence from
base caller

Evidence for
G or A

A A G G T

A A A G T

A A A G T

A A A G T

Trace

Consensus

Error?

Figure 12: Simple example for an explainable assembly discrepancy under
the prerequisite that the consensus is right. The mismatching G base in the
offending read could be edited toward the consensus by looking at the trace
evidence.

evidence for
A, C or T

Certain G, no

Sequence from
base caller

C T C A T

C T C A T

C T C A T

TraceC T G A T

Consensus

Error?

Figure 13: Simple example for an unexplainable assembly discrepancy under
the prerequisite that the consensus is right. There is absolutely no evidence in
the trace of the offending read to edit the mismatching base toward q consensus.

Lee et al. (2002) introduced heuristics using partial order graph to use pair-
wise dynamic programming for multiple sequence alignments to resolve prob-
lems posed by repetitive sequences and overcompression. One shortcoming of
this approach was that it turned out to be not immune to order-dependency
effects in the constructed alignments.

In the end, all this means that the overcompression criterion is only partly
useful for tracking misassemblies in genomic sequencing and not useful at all
for detecting misassemblies in EST sequencing projects. As a result to this,
the strategy conceived was the one of the least number of unexplainable errors
present in an assembly to be optimal.

30

3.2. DEVELOPING A NEW STRATEGY Thesis

3.2.2 Focussing on observable data

Unexplainable error are errors in an assembly where evidence in the trace data
does not permit to correct wrongly called bases of the offending read toward
a consensus. Figure 12 shows a simple case of an explainable error – which
almost certainly will be edited away – while figure 13 pictures an unexplainable
error in an assembly. Discrimination possibilities between base calling errors
and real discrepancies is the main difference to using simple quality values as
discerning criterion only: quality values do not offer alternatives to the called
base. Regardless of the possible quality of a base, trace data always offers this
possibility.

So, a novelty of the new assembly strategy is that the assembler has been
combined with some capabilities of an automatic editor. Both the assembler
and the automatic editor are separate programs and can be run separately, but
the tasks of assembly and finishing can be viewed to be closely related enough
for both parts to include routines from each other (see also Chevreux et al.
(1999); Pfisterer and Wetter (1999)). In this process, the assembler gains the
ability to perform signal analysis on partly assembled data which helps to re-
duce misassemblies especially in problematic regions like standard repeats –
e.g. ALUs, LINEs, MERs, REPT etc., see Bruce et al. (1994) for more infor-
mation on these – where simple base qualities alone could not help. Analysing
trace data at precise positions with a given hypothesis ’in mind’7 is a substan-
tial advantage of a signal analysis aided assembler compared with a ’sequential
base caller and assembler’ strategy, especially while discriminating alternative
solutions during the assembly process. In return, the automatic finisher gains
the ability to use alignment routines provided by the assembler.

3.2.3 Pattern analysis

Another important improvement of the developed assembly strategy that dif-
ferentiates it from simpler alignment algorithms is the possibility to perform
post-assembly validation checks on the resulting contigs. These checks are run
to find misassembled reads and remove them from the assembly. Most often,
these misassemblies are due to repetitive sequences that might differ in only
one or two percent on stretches as long as several hundred bases. This is some-
thing almost impossible for alignment algorithms to discern correctly as these

7e.g. ’could the base G at position 235 in read 4 be replaced by a A?’ (because the overall
consensus at this position of the other reads suggests this possibility)

31

3.2. DEVELOPING A NEW STRATEGY Thesis

Assembler
MIRA

Finished project

Assembling read−pairs from partial path into contigs

Accepting/Rejecting based on error rate of unexplainable errors

Contig assembly

Fast read comparison

Graph showing potential overlaps

Data preprocessing

Sequence vector clipping etc.

Read extension

Extension of high confidence regions (HCRs) in reads

Automatic editing

Correction of errors in contigs

Confirmation of overlaps

Alignment of read−pairs

Building graph containing all possible assemblies

Smith−Waterman alignment

Partial path finder

Searching best partial path to align read−pairs
Search for misassemblies due to repeats

Tag repeat marker bases, disassemble faulty contigs

Repeat locator

Figure 14: Phases of a MIRA assembly cycle. Plain arrows show imperative
pathways, dashed arrows denote optional pathways.

algorithms are specifically designed to work with slightly erroneous data. So,
repetitive sequences still might get wrongly assembled together a first time.
Fortunately, these repeats produce error patterns in an assembly that can be
searched for and recognised by pattern recognition algorithms. These algo-
rithms are helped by the fact that the automatic editor will have edited away
most of the trivial base calling errors. The remaining error patterns can be com-
pared to typical repeat error patterns and the offending reads can be tagged as
repetitive and marked for a subsequent assembly iteration.

Figure 14 depicts an approximate overview of the developed strategy as well

32

3.2. DEVELOPING A NEW STRATEGY Thesis

as the different phases involved while assembling a project:

1. The reads constituting an assembly project are preprocessed by external
programs to perform different refinement steps to the original read data,
e.g. sequencing vector clipping, standard repeat tagging, quality clipping
etc. A multitude of programs is available, each of them being very spe-
cialised for a certain task.

2. The high confidence region (HCR) of each read is compared with a quick
heuristic algorithm to the HCR of every other read to see if it could match
and have overlapping parts (these are the ’DNASAND’ and ’ZEBRA’ filter).
All the possible overlaps form one or several initial building graphs.

3. The reads in the initial building graphs which could have overlaps are
being reviewed with an adapted Smith-Waterman alignment algorithm
(banded version). Obvious mismatches are rejected and removed from the
initial building graph, the accepted read-pairs are inserted into one or sev-
eral alignment graphs. These alignment graphs define all the assemblies
that are possible with the given reads.

4. Optional pre-assembly read extension step: the assembler can try to ex-
tend HCRs of reads by analysing the overlap pairs from the previous
alignments. This can help to elongate reads which were cut back too
much by conservative quality clipping mechanisms during pre-assembly
preprocessing. The confirmation of a base sequence by two similar reads
combines the advantage of single read quality clips and coverage security.

5. A contig is assembled by building a preliminary partial path through the
alignment graph and then adding the most probable overlap candidate to
a given contig. Contigs can reject reads if these introduce to many unex-
pected and high profile errors in the existing consensus. Errors in regions
known as dangerous – for example tagged standard repeats like ALUS
and REPT, or possible repeat marker bases (PRMB) found in previous it-
erations – get additional attention by performing simple signal analysis
when alignment discrepancies occur.

6. Contigs can be be optionally analysed and corrected by an incorporated
version of an automatic editor (EdIt). This editor analyses fault regions
in contigs and corrects base call errors (and alignment errors resulting
from these) by analysing the underlying trace signals of the reads and
calculating probabilities with respect to the coverage of the contig.

33

3.2. DEVELOPING A NEW STRATEGY Thesis

7. Also optionally, long term repeats that were misassembled can be searched
for. The assembler looks for typical misassembly patterns provoked by re-
peats (like mismatch columns). Bases that are dissimilar in the different
repeats get tagged as possible repeat marker base (PRMB) to help the as-
sembly algorithm in subsequent iterations and then the wrongly assem-
bled contigs get dismantled for further reassembly.

8. The resulting project is written out to standard file formats for further
post-assembly processing.

As can be seen, the overall structure of the assembly strategy chosen – i.e.
the iterative nature of its design and the steps concentrating on high quality
parts first – reflects the needs imposed to it by the aims set for this thesis:
identifying repeats to avoid misassemblies and decrease the error rate of the
final consensus sequence. Each subpart of the assembly strategy is embedded
into the overall scheme, which in turn means that, sometimes, algorithms show
unexpected – and mostly undesired – side effects when used within the whole
system. The next chapter therefore goes into the details of those algorithms,
explains the inner working mechanisms of each subpart and how they are con-
nected to each other.

34

4 Methods and Algorithms

“Half of being smart is to know what you’re dumb at.” (Solomon
Short)

This chapter describes in detail the different steps of the assembly design
that was outlined in the previous chapter. The chain of reasoning that led to
certain algorithms is also exposed, together with examples coming from real
world projects when appropriate.

4.1 Data preprocessing and input

Strictly speaking, data preprocessing does not belong the actual assembler as
almost every laboratory has its own means to define ’good’ quality within reads
and already use existing programs to perform this task.1 But as this prepro-
cessing step directly influences the quality of the results obtained during the
assembly, defining the scope of the expected data is desirable. Moreover it can
explain strategies implemented to eventually handle incorrectly preprocessed
data.

The most important part in the sequenced fragments (apart from the target
sequence itself) is the sequencing vector data, which will invariably be found
at the start of each read and sometimes, for short inserts, at the end. These
parts of any cloned sequence must imperatively be marked or removed from an
assembly as these would contaminate the “real” sequence that is to be deter-
mined. Programs like LUCY presented by Chou and Holmes (2001) go a great
length to remove vector sequences, perform quality trimming and even com-
pare the sequence produced by several different base-calling programs from
the same chromatogram file to define what they call the “final clean range” (or
high confidence region, HCR, in terms of this thesis). In analogy to the terms

1For example, quality clipping, sequencing vector and cosmid vector removal can be controlled
by the PREGAP4 environment provided with the GAP4 package (Bonfield et al. (1995b);
Staden (1996); Bonfield and Staden (1996)) or the LUCY program, parts of these tasks can
also be done with cross match provided by the PHRAP package or other packages like, e.g.,
PFP from Paracel (Paracel (2002a)).

35

4.1. DATA PREPROCESSING AND INPUT Thesis

used in the GAP4 package, this thesis will refer to marked or removed parts
as ’hidden’ data (Staden et al. (1997)), other terms frequently used are ’masked
out’ or ’clipped’ data.

Errors occurring during the base-calling step or simply quality problems with
a clone can lead to more or less spurious errors occurring in the gained se-
quences. These in turn sometimes interfere with the ability of preprocessing
programs to correctly recognise and clip the offending sequence parts. There-
fore the mira and miraEST assemblers developed during this thesis incorpo-
rate a number of routines across all steps of the assembly that ’save’ sequences
that were incorrectly preprocessed. While this section gives a brief algorithmi-
cal overview over implemented methods within the scope of this section, please
refer to the program documentation in appendix A for a full description of all
available options. The routines that were implemented and that can be used by
the assembler are:

1. Standard quality clipping routines:
Clipping is done with a modified sliding window approach known from
literature as in Chou and Holmes (2001); Staden et al. (1997), where a
window of a defined length l is slided across the sequence until the average
of the quality values attains a threshold t. Usual values for this procedure
are l = 30 and t = 20 when using log-quality values as described in section
2.2.1. An additional backtracking step is implemented to search for the
optimal cutoff-point within the window once the stop-criterion has been
reached, discarding bases with quality values below the threshold. This is
performed from both sides of the sequences.

2. Pooling masked areas at sequence tails:
Parts of sequences that were masked (X’ed out) by other preprocessing
programs sometimes contain small areas between 1 and 30 nucleotides
of non-masked characters within the masked area due to, e.g., low quality
data or the usage of slightly differing sequencing vectors. If requested, the
assembler will merge such masked areas when the non-masked sections
do not exceed a given length. E.g, the sequence XXXXATXXXXXXXXXX...

becomes XXXXXXXXXXXXXXXX...

3. Clipping of sequencing vector relicts (while differentiating them from pos-
sible splice variants:
This is done by generating hit/miss histograms of subsequence alignments
between all the sequences. In an alignment of two sequences, it is nor-

36

4.1. DATA PREPROCESSING AND INPUT Thesis

mally to be expected that two neighbouring subsequences of one sequence
should also be neighbouring to each other in the other sequence. If this is
the case, then a “hit” is counted, if not, a “miss”. The good quality middle
parts will have a high ratio of consecutive subsequence alignment hits ver-
sus “unexpected” misses within a sequence histogram. Meanwhile, vector
leftovers at the end of sequences will have a very low ratio of hits vs.
misses. The beginning/end of such vector fractions is marked by a rela-
tively sharp change in the ratio – a “cliff” – which can easily be detected.
Unfortunately – in EST projects – different splice variants of eukaryotic
genes present the same effects within histograms so that hit/miss ratio
changes are searched for only within a given window at the start and end
of the ’good’ sequence parts (usually between 1 and 20 bases) to only catch
such vector relicts present there.

4. Uncovering and tagging of poly-A and poly-T bases at sequence ends in
EST projects:
Unlike other specialised transcript assemblers like pta (Paracel (2002c)),
the algorithms of the assembler developed in this thesis differentiate be-
tween different splice variants present in an assembly. They therefore
include poly-A / poly-T bases when aligning EST sequences. The assem-
bler will recover those areas by comparing masked sequences with the
original counterpart and uncover exactly the poly-A/T stretches present
at the end of the sequences by a simple but fault-tolerant base-by-base
comparison algorithm. These stretches will furthermore be tagged with
assembly-internal meta information to help the algorithms in the splice
detection task.

A high confidence region (HCR) of bases within every read is selected through
quality clipping as an anchor point for the next phases. Existing base callers
(ABI, PHRED, TraceTuner and others) detect bases and rate their quality quite
accurately and keep increasing in their performance, but bases in a called se-
quence always remain afflicted by increasing uncertainty towards the ends of a
read. This additional information, potentially worthful, can nevertheless con-
stitute an impeding moment in the early phases of an assembly process, bring-
ing in too much noise. It is therefore marked as low confidence region (LCR) for
cautious use in the assembly process.

The following list shows the type of data the assembler will work with, any of
which can be left out (except sequence and vector clippings) but will reduce the
efficiency of the assembler:

37

4.2. READ SCANNING Thesis

1. the initial trace data, representing the gel electrophoresis signal;

2. the called nucleic acid sequence;

3. position specific confidence values for the called bases of the nucleic acid
sequence;

4. a stretch in each sequence marked as HCR;

5. general properties like direction of the clone read and name of the se-
quencing template etc.;

6. special sequence properties in different regions of a read (like sequencing
vector, known standard repeat sequence and known SNP sites etc.) that
have been tagged or marked.

4.2 Read scanning

A common start for any assembly is to compare every read with every other
read (and its reversed complement) using a fast and fault-tolerant algorithm to
screen all reads and detect potential overlaps.

As Anderson and Brass (1998) denoted, “the effectiveness of database search
methods can also be illustrated by the distance the query sequences can be
evolved before the search method no longer finds the homologous sequence in
the database.”

In this section, the problem of finding similar subsequences including errors
is formalised and existing algorithms are presented. Then two fast scanning al-
gorithms – named DNA-SAND and ZEBRA – and their theoretical effectiveness
are presented.

4.2.1 Formalising the problem

Let A be the alphabet of an (unknown) true sequence T – which has passed
through the electrophoresis and base-calling process – and of which we now
have a representation Sx in the alphabet Ax.

In the notation of regular expressions: let a true sequence T of length nt be
denoted by T = t1t2...tn (with ti ∈ A) and let the representation S be denoted
by S = s1s2...sm (with si ∈ Ax). The three types of errors in Sx of length m can
be modeled as follows (assuming that a ∈ Ax):

38

4.2. READ SCANNING Thesis

– insertions into S with the operator ∗ meaning zero or more occurrences of
the preceeding character a ∈ Ax

S = a∗t1a
∗t2...a

∗tna∗ (4.1)

– deletions from S with the operator ? meaning zero or one occurrence of
the preceeding character

S = t1?t2?...tn? (4.2)

– mismatches in S with (ti|aa 6=ti) meaning a choice between ti and a charac-
ter from Ax which is unequal to ti

S = (t1|aa 6=t1)(t2|aa 6=t2)...(tn|aa 6=tn) (4.3)

Typically, S does not contain only one type of errors but all three. The formally
correct regular expression for this is

S = a∗(t1|aa 6=t1)?a∗(t2|aa 6=t2)?...a∗(tn|aa 6=tn)?a∗ (4.4)

which can safely be shortened to

S = a∗t1?a∗t2?...a∗tn?a∗ (4.5)

during a string comparison process as

(ti|aa 6=ti) = a (4.6)

so that in the case of a mismatch, the preceeding a∗ expression in front of ti?
would already catch any error.

In plain words: each base of the true genomic sequence T one wants to know
may or may not be present in its representation S; additionally, it may or may
not be surrounded by one or more artefact bases in S.

Finally, the orientation of S compared to T is unknown. S can be in the same
direction as T , but it also can be in the reverse complemented direction. In this
case, the bases in S must be reversed and complemented before a search can
take place. Defining t ∈ Ax as the complementary base of t ∈ Ax, it is very well
possible that

S = a∗t1?a∗t2?...a∗tn?a∗ (4.7)

39

4.2. READ SCANNING Thesis

but also that
S = a∗tn?a∗tn−1?...a∗t1?a∗ (4.8)

The problem is now to design fast algorithms that can recognise patterns in
sequences containing all errors described above.

4.2.2 Present algorithms

Several algorithms developed for string comparisons in computer science have
been adapted to the needs of bioinformatics during the past decades, as search-
ing large protein or nucleic acid databases has always been a critical application
in biosciences2. There is one main differentiation to be made: depending on the
type of search, searching in protein databases sometimes requires algorithms
completely different from those for searching in nucleic acid sequences. Errors
occurring in the nucleic acid sequence will cause – in the case of indels – a
frame-shift on the protein level, subsequently changing all the following amino
acids. At the nucleic acid level, an indel just inserts or deletes a base without
changing the following bases. The following text focuses on the special problem
of searching patterns in nucleic acid sequences.

In many cases, algorithms that work well for normal texts or in signal theory
are not well suited for DNA sequences.

Multiple sequence alignments techniques that use the fast Fourier trans-
formation (FFT) have been much less studied than other string and charac-
ter based algorithms, although FFTs are a widely used method in signal data
computation. A reason for this could be that Felsenstein et al. (1982a) first
published results of using simple variants of this method that cannot allow
for insertions and deletions during matching and were not really satisfactory,
but given the drastic increase in computation power in the last 20 years, Ra-
jasekaran et al. (2002) and Katoh et al. (2002) were able to refine the approach
and achieve good results.

The ’optimal mismatch’ algorithm presented by Sunday (1990) relies on al-
phabet size and character frequencies in a text to achieve a searching speed
which is in most cases well below O(n). But in most nucleic acid sequences
gained from sequencing, the size of the alphabet is only 4 characters (plus one
wildcard) and the frequencies of the bases are almost equally distributed. This
noticeably reduces the effectiveness of the algorithm. Although it is relatively
easy to implement single character wildcards like “N” (Gronek (1995b)) or the

2see also Myers (1991)

40

4.2. READ SCANNING Thesis

IUPAC code, it still cannot allow for indels.
Algorithms based on adapted Boyer-Moore string searching methods (Boyer

and Moore (1977)) have also been implemented and used in the bioinformatics
field (Prunella et al. (1993)), but these require a comparatively slow sequence
preprocessing step. Giladi et al. (2002) presented an algorithm based on tree-
structured index of k-tuple windows in vector space, with tree-structured vector
quantisation which worked well only in balanced trees.

The dynamic programming algorithms for global alignments introduced by
Needleman and Wunsch (1970) and later refined for local alignments by Smith
and Waterman (1981) are the most suited methods for detecting – even partial –
overlaps between sequences. They allow insertions, deletions and mismatches
in both sequences and some algorithms, e.g. Guan and Uberbacher (1996), allow
frameshift errors in protein sequences. Unfortunately, the run-time complexity
of unbanded versions of those algorithms – this means, without prior knowl-
edge or assumptions about the alignment of the sequences – is O(n ∗m), with n

and m being the length of the two sequences. This makes the run-times unac-
ceptable for most screening procedures when special hardware acceleration is
not available.

Obviously, the problem of indels occurring in a sequence is one of the hardest
ones to be solved. This is the reason why almost all programs available today
for heuristic string searching are based on the word-based method introduced
by Wilbur and Lipman (1983). The most known representatives for this search
class are the FASTA family of programs (Pearson (1998)) and the BLAST fam-
ily (Altschul et al. (1997)). They use (sometimes inverted) indices and the fact
that matches between a search pattern and a sequence have at least one word
of several error-free bases in common (Huang (1996); Schuler (1998)). Methods
for allowing mismatches and indels (Grillo et al. (1996)) or basing on probabilis-
tic interpretation of alignment scoring systems (Bucher and Hofmann (1996))
have also been devised, but are generally impracticable for more than one or
two errors. The newer SSAHA algorithm by Ning et al. (2001) used a new
way to combine position specific hashing algorithms using non-overlapping k-
tuples and hit sorting algorithms. Recently, Kent (2002) developed the BLAT
tool which performs “stitching and filling in” of multiple exact k-tuple matches
to produce a fast aligner, but notes that the alignment strategy becomes less
effective for sequence identity below 90%.

There is a major drawback of these methods: for finding matches in regions
with high error rates, the specificity of the search has to be decreased to a
point where true-positive matches are (by far) outnumbered by spurious, false-

41

4.2. READ SCANNING Thesis

positive matches. This is often the case at the ends of shotgun-sequenced data.

4.2.3 DNA-Shift-AND algorithm

An interesting algorithm for searching patterns allowing errors is the Shift-
AND algorithm presented in Wu and Manber (1992b) and Wu and Manber
(1992a), based on previous work of Baeza-Yates and Gonnet (1992). The alpha-
bet Σ in which to search can be freely chosen, character frequencies of single
letters in the text do not impede the speed of the algorithm. Searching for pat-
terns in a text is abstracted to the problem of iterating bit arrays according to
a predetermined schedule (Gronek (1995a)) stored in transition tables. These
arrays represent different states of search results of a pattern against a text
and can thus be held in machine registers if the length of the pattern does not
exceed 32 or 64 characters, depending on the processor type.

The Shift-AND algorithm searches a pattern of configurable length in a se-
quence allowing for a configurable number of errors. Since most BLAST search
actions in nucleotide sequences are performed with a word length well below
32 characters, the length of patterns has been limited to 32 bases. This al-
lows to write the algorithms in a way that fits to the architecture of virtually
all presently available machines. The algorithm has been implemented in a
straight-forward way based on the publications of Wu and Manber (1992b) and
Gronek (1995a).

Due to limitations of the pattern length discussed above, the complexity of
the DNA-Shift-AND (DNASAND) algorithm as it has been realised is O(cn);
where c is the number of errors allowed in a pattern and n is the length of
the text to be searched. The algorithm is nonetheless able to recognise regular
expressions as defined in equations 4.7 and 4.8, as long as the number of correct
bases and the number of errors does not exceed the length of a pattern to be
searched. For example, searching for a DNA pattern of length 20 and allowing
3 errors will find any occurrence of the pattern in a sequence with 17 correct
bases and 3 errors, 18 bases and 2 errors, 19 bases and 1 error or the complete
pattern without errors. Each error might be either an insertion, a deletion or
a mismatch at any location. This metric to measure the similarity between
two strings is called the Levenshtein distance when each insertion, deletion or
mismatch is defined to count as one error.

42

4.2. READ SCANNING Thesis

Implementation of the DNASAND sequence filter

The function of a DNA sequence overlap filter is to find as many potential over-
laps between sequences as possible. A key point in this requirement is the
ability to find – besides long overlaps with low error rates expected to be recog-
nised by any algorithm – even weak overlaps between any two sequences. Weak
overlaps are characterised either by only a small number of bases from each se-
quence overlapping each other or by overlapping bases having a high error rate;
or both. Of all the string comparing and string alignment algorithms known
up to now, only the Smith-Waterman dynamic programming algorithm has the
possibility to find even weak overlaps. Unfortunately it has too high processor
requirements to be used as a fast filter. The DNASAND algorithm is a good
substitute for this task.

A reasonable assumption for determining overlaps would be that two se-
quences S1 and S2 might overlap if they both have a succession of k bases in
common (a common subsequence). As the probability of the sequences having
errors is high enough, it is wise to extend the assumption: S1 and S2 might
overlap if they have a common subsequence k bases long with at most l errors
in it. The problem is now to find the common subsequence.

As the problem is to find even weak overlaps, a first approach would be to
take the first k bases of S1 as pattern P1s and search for it in S2 (allowing l

errors). The localisation of the two sequences relative to each other is unknown,
it is therefore necessary to do the same the other way round: take the first
k bases from S2 as pattern P2s and – allowing l errors – and search for it in
S1. Doing this, every overlap combination of two sequences having the same
orientation (both forward or in reversed complement direction) and at least k

bases in common with at most l errors will be found.
The next difficulty is the fact that the orientation of the sequences to each

other is unknown: they both can have the same direction – for the sake of
simplicity, it is indeed of no consequence to the filter whether the sequences
are both in forward or both in reversed complement direction, as long as it is
the same orientation – or they can have opposite directions where one of the
sequences overlaps with the reverse complement of the other sequence3. To
find overlapping sequences that do not have the same direction, the pattern Ps

taken from a sequence Si must be searched in Sj and the reversed complement
pattern P s from Si must be searched in Sj .

3It is again of no consequence which sequence is in reverse complement direction to the other,
as both will be searched with the reverse complement pattern of the other one.

43

4.2. READ SCANNING Thesis

Sequence 1

Sequence 2

Patterns of read 1

Patterns of read 2

Hit Hit

HitMiss Hit

Sequence 1

Sequence 2

P

Miss

Matches of sequence 2 with sequence 1

Matches of sequence 1 with sequence 2

P1s P

P P P

1m 1e

2e 2m 2s

Figure 15: Mode of operation for DNASAND. When searching for overlaps for
two sequences, patterns from the start, mid and end of each sequence are taken
and slided across the other sequence with the Shift-AND algorithm. The same
is done for the reverse of the sequences (not shown).

Doing this, there is still one further possibility for two sequences to overlap
that would not be found using this method: when two sequences having oppo-
site directions overlap at the end.The solution to this problem is to take not
only the start of a sequence to search as pattern Ps or reversed complemented
pattern P s in any other sequence, but also to take the end of a sequence as
pattern Pe or as a reversed complemented pattern P e and search for it in each
other sequence.

Summarising the above considerations: to determine if a sequence Si might
overlap with any other sequence Sj , two patterns – Pis at the start and Pie

at the end – and their reversed complements – P is and P ie – are taken from
Si. These patterns are compared with the modified Shift-AND algorithm to the
whole sequence Sj and will show if the patterns match anywhere within Sj . If
this is the case, the filter can assume that there is a potential overlap between
Si and Sj (or between Si and Sj).

However, there is still one problem to consider: the filter relies on the poten-
tially poorest data – present at the end of sequences – to find even the weakest

44

4.2. READ SCANNING Thesis

overlaps. It is always possible that the ends of the sequences contain too many
errors to act as reasonable patterns, which, in turn, can cause the filter not to
recognise potential overlaps. Some prerequisites have to be met for a situation
like this to happen: the ends of the sequences are polluted with foreign DNA
like non-removed vector sequence, or they contain an unusually high level of
errors which has not been recognised by programs performing quality-clipping.

It is, consequently, wise to take preventive measures for cases like these. A
third pattern and its reversed complement to be searched for are hence intro-
duced in each sequence. These patterns Pim and P im are taken from the mid
of each sequence Si; thus in a region where the error rate is presumably very
low. This third pattern acts as safety net: it will not find weak overlaps, but
it will recover potential overlaps that have slipped through the patterns from
the ends of the sequences because of a too high error rate. Figure 15 gives an
overview on the resulting mode of operation for DNASAND.

4.2.4 The ZEBRA algorithm

Grillo et al. (1996) presented an algorithm to find and remove redundancies in
genomic databases. This algorithm is based on an ’approximate string match-
ing’ procedure, which is able to determine the overall degree of similarity be-
tween each pair of sequences contained in a nucleotide sequence database. The
basic idea of their computational model is the generation of a set of highly de-
scriptive indices for each sequence position by hashing each position in a nu-
cleotide string and using wildcards.

Although the original method is too slow to be directly applicable to the prob-
lem of finding similarities in shotgun data, a way has been found for this thesis
to extend and combine it with algorithms coming from the field of theoretical
signal analysis. The ZEBRA4 algorithm that was developed is based on the in-
sight that within normal shotgun data, the number of reads not matching with
each other increases with the square of the number of reads present, while the
number of reads matching increases only linearly. It is therefore important not
to recognise matching reads quickly, but to skip non-matching reads as fast as
possible.

The strategy used is not a divide and conquer but rather a transcribe, divide,
reorganise, concentrate and conquer strategy. As bonus, ZEBRA calculates the
offset of the overlap on the fly.

4ZEBRA is not an acronym, but the algorithm was named because it produces ’bands’ in memory
which resemble the patterns of the african Zebra

45

4.2. READ SCANNING Thesis

C

01

A

00

G

10

G

10

T

11

C

01

G

10

A

00 = 0x4ad8

Figure 16: Transforming a nucleotide 8-tuple (octet) into a 16 bit hash.

00
01
10
11 0x4ad8

0x4a98

0x4a18
0x4a58

NC

01 00

A G

10

G

10 01

C G

10

A

00 =

Figure 17: Transforming a nucleotide octet containing one undefined base into
four 16 bit hashes.

Implementation of a ZEBRA sequence filter

As shown in figure 16, the alphabet of a nucleotide sequence can be translated
into hash values of any desired length by segmenting it into tuples. The car-
dinality of the nucleotide alphabet is 4 (2 bit). Assume that one can code an
A to 00, C to 01, G to 10 and T to 11. This enables to hash 8 nucleotides (nu-
cleotide 8-tuple: an octet) into a 16 bit integer value (the reason for using 16
bits – apart from the fact that this is standard word size for computer systems
– will be explained later on).

Doing this for every position of a nucleotide sequence of size n will result in
n−7 hashes, but – similarly to the strategy used in the DNA-SAND algorithm –
an N in the nucleotide sequence is treated as correctly recognised but otherwise
unspecified base. Therefore, not one hash is computed for a nucleotide octet
containing one N, but four (see figure 17): by sequentially substituting the ’N’
for one of the bases A, C, G and T. Although more than one N within an octet
could be computed using the same logic, this would increase dramatically the
number5 of hashes to be computed. Fortunately, more than one N within a
short number of nucleotides can be seen as hint that the base caller had severe
problems to find the right bases because of bad signal quality. As a consequence,
nucleotide octets containing more than one N are not computed.

Figure 18 demonstrates how hashes are stored in a table (the combined hash-
position table) together with the index position at which they occur. Once the
sequence has been transformed into the table, it is sorted using the hashes as

5which is 4k for k Ns.

46

4.2. READ SCANNING Thesis

.

.

.

.

.

.
.
.
.

Hashes positions

Hash

Hashes positions

Hash

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

A
C
G
T

N=

C
A
G
G
T
C
G
A
C
N

0x2b61 1

hashes

Sorting by

0x4ad8
0x2b61

0
1

0x2b61 56

0x2b61 56

0xad87 2
0xad86 2
0xad85 2
0xad84 2

0x4ad8 0

0xad87 2
0xad86 2

2
0xad84 2
0xad85

Figure 18: Computation of the combined hash-position table by successively
computing nucleotide octet hashes for each position of a sequences and storing
the hash values together with the position at which they occurred in a table.
Then sort the table using the hashes as key.

key.
Figure 19 shows how the resulting sorted table is split up into two subtables:

a hash index table (which will subsequently be called imprint) and a hash po-
sition table. The imprint contains exactly k = 2n elements with n being the
number of bits in a hash value. In the case of the ZEBRA algorithm, n = 16
so this results to k = 65536 elements per table. Each element in the imprint is
either a NULL pointer – if the corresponding hash has not been computed – or
a pointer to the first hash position element in the hash position table. The hash
position table is composed by the hash positions sorted in ascending order with
a special element (-1) as delimiter to mark the end of the corresponding hash.

Comparing two sequences is now reduced to the task of comparing two im-
prints element by element and logging the distance at which equal hash po-
sitions appear in two sequences. A NULL pointer in one of any two imprint
elements shows that the corresponding nucleotide octet does not appear in the

47

4.2. READ SCANNING Thesis

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
1

56
−1

0
−1

2
−1
2

−1
2

−1

0x2b61 1
0x2b61 56

0x4ad8 0

0xad87 2
0xad86 2

2
0xad84 2
0xad85

0 0x2b61 0x4ad8 0xad84−87

Hashes

Hash

positions

Hash index table (Imprint)

0xffff

Hash position table

NULL NULL NULLNULL

Figure 19: Splitting a combined hash-position table into a hash index table (an
imprint) and a hash position table.

sequence belonging to the imprint, whereas a valid non-NULL pointer into a
hash position table within both elements of an imprint shows that at least the
octet belonging to this hash appears in both nucleotide sequences.

As the length of todays shotgun sequences varies between 300 and 1500
bases, imprints of size k = 216 will have only between 1

64 and 1
40 of their ele-

ments filled with non-NULL pointers. As result, sequences being completely
dissimilar will generate only a few hits when comparing their imprints. As-
suming a random distribution of hashes, the number of equal hashes in two

48

4.2. READ SCANNING Thesis

imprints is expected to be

(numhash1) ∗ (numhash2)
k

with k = 65536 in this case

For example, one can expect between 1.7 (300 bases) and 34.3 (1500 bases)
occurrences of the same octet in non-related sequences.6

In case a hash is present in both imprints, the relative distance between the
two octets can be calculated by stepping through the corresponding positions
in the hash position table and subtracting the position of the octet in the first
sequence from the position of the same octet in the second sequence. This must
be done for all appearances of this octet in both sequences. The relative distance
at which two equal octets occur in a sequence is logged in a histogram (see figure
20).

Therefore, the algorithm does not explicitly track occurrences of longer sub-
sequences, but looks at the similarity as whole between two sequences. This
keeps data structures and code loops simple enough to let compilers optimise
at their best.

Note that the problem of comparing two sequences has been reduced to a loop
operation that fetches successive data from memory and compares it. Any of
todays processors uses speculative data prefetch (sometimes called data burst),
i.e, if data is fetched from address n in memory, the processor will speculatively
prefetch a certain number of data beginning at n + 1 in its ’spare time’ as many
algorithms work on consecutive data in memory and the probability of needing
this data within a short period of time is fairly high. The ZEBRA algorithm is
designed in exactly this way to support that feature and this effectively leads
to a speed increase of the algorithm: in dissimilar sequences, the algorithm
spends most of the time by comparing the two imprints and only exceptionally
looks up data in the hash position table, computes octet distances and stores
them in the distance histogram.

The histogram itself shows the result of the comparison of two sequences in
a very straightforward way. The three distinct types of histogram are:

1. Similar octets occurring in both sequences but at different relative dis-
tances from each other. The occurrences are scattered across the his-
togram, no distinct peak can be detected. Thus, the sequences do not
resemble each other and are not possible overlapping candidates.

6see also the paper from Pearson (1998) for a review on empirical statistical estimates for se-
quence similarity searches

49

4.2. READ SCANNING Thesis

1

56

−1

2

−1

...
Distance: 38−56=−14

Distance: 39−2=37

38

−1

...

39

−1

Distance: 38−1=37 +

+

*

*

0x2b61 0x2b61

0xad850xad85

table seq. 1
Hash position

table seq. 2
Hash position

Imprint sequence 2

Imprint sequence 1

0 0x2b61 0x4ad8 0xad84−87 0xffff

NULL NULL NULLNULL

NULLNULLNULL

0x2b61

NULL

0xad85 0xffff0

* *

+ +

Histogram

−14 0 37 DistanceDistance

Number of occurences

Figure 20: Computational scheme for the octet relative distance histogram of
two sequences. Dissimilar sequences with dissimilar octets will show single oc-
currences scattered across the histogram. Similarities between two sequences
will show up as peaks of variable height and width. The higher the peak, the
more similar octets have the same relative distance. The wider the peak, the
more insertion and deletion errors are in one or both of the two sequences.

50

4.2. READ SCANNING Thesis

2. A single peak. The higher the peak, the more nucleotide octets pairs have
the same relative distance and the wider the peak the more insertion and
deletion errors occur in one or both sequences.

3. A certain number of peaks, sometimes not clearly separated. This is typi-
cal for identical short term repeats between 1 and a few dozen nucleotides
occurring in both sequences. The repeated occurrence of equal octets at
different places in the sequences leads to a smearing effect.

Once a peak in the histogram exceeds a configurable height, the two se-
quences can be seen as potentially overlapping. The higher the peak, the more
octets in both sequences have the same relative distance from each other. The
wider the peak, the more insertion and deletion errors are in one or both of the
two sequences. The offset of the peak and its height give – together with the
length of both sequences – a valuable first guess of the overlap strength.

Improving the ZEBRA sequence filter: speeding up comparison

An important insight is the fact that comparing two imprints is implemented by
iteratively making boolean decisions regarding the state of two array elements.
In fact, an imprint element containing a NULL pointer can be expressed as 0
(or false), while an imprint element containing a valid pointer into the hash
position table can be expressed as 1 (or true).

compressed imprint[k] =

{
true if imprint[k] != NULL
false else

This leads immediately to the approach of compressing the imprints into bit
vectors as performing AND operations on multiple bits (8, 16, 32 or even 64
bits). Logical operations like AND are one of the most common and thus fastest
operation realised within hardware. Figure 21 shows the compressing process
exemplarily.7

Instead of comparing 2 times 128kB, the same operation can be done by per-
forming an AND operation on 2 times 8kB. This reduces greatly the number of
loop iterations and the amount of data transported on the system bus between
RAM and processor.

7The graphical display of the resulting bit vectors reminds vaguely to the african zebra, hence
the algorithm’s name.

51

4.2. READ SCANNING Thesis

0 1 1 1 1 00 0 0 0 0 00 010 00 0 01 0

0 0x2b61 0x4ad8 0xad84−87 0xffff

NULL NULL NULLNULL

...

0 0 0 01 1

...

0 1

...

01

...Compressed imprint 1 0 0 0 0

0 0Compressed imprint 2

Compressed imprint 4

Compressed imprint 8

01 1110

0 1 1 01

...

...

Imprint (hash index table)

...

Figure 21: Compressing the imprint by transforming pointers into boolean
arrays.

The number of potential overlaps grows linearly to the number n of sequences
an assembly project contains, while the number of non-overlapping reads ap-
proximates to n2. It is therefore preferable to speed up the comparison of two
dissimilar sequences than the comparison of two similar sequences.

In fact, ZEBRA implicitly allows to take advantage of the data structures
created to support this goal. As already proven, major parts of any sequence
imprint are filled with NULL pointers (respectively ’false’ in a compressed im-
print) so that comparing dissimilar sequences will generate only sporadically
false positive octet hits. The idea is now to compress the compressed imprint
further to reduce the number of loop iterations and data transports between
RAM and processor even more.

Consecutive bits in a compressed imprint can be bundled by the OR opera-
tion: bundling n consecutive bits leads to a compressed imprintn. Comparing
two sequences is then done by comparing two compressed imprintsn. If both
have a bit set at the same position, then the corresponding imprint elements
have to be examined more closely. This is – of course – affected with an over-
head: data speculatively prefetched by the processor must be discarded and
data stored in other tables must be fetched. If n is chosen too low, the full po-
tential of compression and loop iteration decrease is not used. On the other
hand, if n is chosen too high, the imprints will be compressed too much: this
leads to an exaggerated number of false positive hits in the comparison of two
compressed imprintn.

During experiments with projects between 500 and 5,000 reads, having an

52

4.2. READ SCANNING Thesis

A C A G G T C G A

= 0x4ad801 00 10 10 11 01 10 00
00 10 10 11 01 10 0000

01 10 10 11 01 10 0000
= 0x12d801 00 10 11 01 10 0000

01 00 10 11 01 10 0000
01 00 10 10 01 10 0000
01 00 10 10 11 10 0000

01 00 10 10 11 01 1000
01 00 10 10 11 01 0000

= 0x0ad8
= 0x1ad8

= 0x12d8
= 0x1298
= 0x12d8
= 0x12d4
= 0x12d6

Figure 22: Transforming a nucleotide 9-tuple into 9 hashes describing the
tuple allowing for 1 error.

average usable sequence length between 300 and 1,000 bases, nesting a com-
pressed imprint1 loop within a compressed imprint8 loop gave the best overall
time performance.

Improving the ZEBRA sequence filter: dealing with errors

Up to this point, the ZEBRA algorithm still cannot handle insertion or deletion
errors very well. Still, it is known that the sequences that are to be compared
are potentially error prone, especially toward the ends. This may include inser-
tion and deletion errors.

This can be addressed quite easily by using a technique made popular by
Grillo et al. (1996). The technique presented in that paper consists of comput-
ing not one hash per sequence position, but expecting the nucleotide tuple to
contain errors and taking this into account by computing multiple hashes, each
hash representing the possibility of a certain number of errors being contained
in the tuple.

As already seen in section 2.2, sequences gained in laboratory tend to have
less than 1% errors within the good middle part, but up to 15% toward the ends
before the reads become completely unusable.

Following the conclusions of Grillo et al. (1996), computing n1-tuples – this
means, tuples containing n nucleotides but allowing 1 error – is a good com-
promise between sensitivity, specificity, computational overhead and execution
speed. Porting this to the ZEBRA algorithm, this results into using 9-tuples
allowing 1 error (see figure 22).

Doing this for any position in each sequence allows the ZEBRA algorithm

53

4.3. SYSTEMATIC MATCH INSPECTION Thesis

Potential quality
of match complement

Reversed
Forward

1 2 3 4 5 6
1
2
3
4
5
6

1 2 3 4 5 6
1
2
3
4
5
6

low

medium

good

Figure 23: The “matrices” generated after the first fast scan of every read
against every other in search for potential overlaps. Unlike this small example
with 6 reads might suggest, the matrices in real world projects – with a large
number of reads – are normally sparsely occupied. Therefore, using hash stor-
ing techniques is more appropriate as otherwise memory consumption would
explode for larger number of reads.

to deal with insertion/deletion errors, but also increases the number of hashes
present in an imprint by approximately a factor of 8 to 9.

4.3 Systematic match inspection

Although the DNASAND and the ZEBRA algorithm do not specify the overall
type of global relationship of two sequences (total correspondence, containment
or overlapping, see Huang (1994)), any type of relationship is recognised. As
result of this first scan, a hash storing technique is used to represent sparse
matrices containing information on potential overlaps of all the fragments and
their orientation (forward–forward or forward–complement) is generated. Fig-
ure 23 shows a schematic drawing on how these data structures are interpreted
internally.

In the next fundamental step, these potential overlaps found during the scan-
ning phase must be examined more thoroughly. Several algorithms have bee

54

4.3. SYSTEMATIC MATCH INSPECTION Thesis

devised for alignments of multiple sequences: Allison (1993) devised a divide-
and-conquer technique for aligning three strings, Stoye (1998) used a similar
technique for 6 to 12 strings. But these multiple alignment algorithms are still
too slow (see Gotoh (1993) for a good explanation) to be used in an assembly
match inspection phase, even when parallelised multiple alignment algorithms
run on multiple processors like Kleinjung et al. (2002) presented.

In the end, the strategy devised for the mira assembler works by examining
potential matches two at a time with a modified Smith-Waterman algorithm
for local alignment of overlaps. Similar strategies were extensively studied by
Barton (1993) and have found their way into other current assemblers like, e.g.,
PGA (Paracel (2002b)).

4.3.1 Improving Smith-Waterman alignment by banding

Observe that two sequences that align well will generate a path through a
Smith-Waterman alignment matrix that will almost run diagonally from the
entry point to the exit point. Only indels will cause a horizontal or vertical shift
of the alignment graph. Assuming that one knew the approximate whereabouts
of either the entry or the exit point and that the alignment has ’acceptable’ qual-
ity, i.e. not too many indels that are spread unilaterally in one of the sequences.
It is then a valid assumption that it should be feasible to reconstruct the align-
ment by calculating only the narrow corridor (a band) through the matrix where
the alignment graph is expected to run through, as is shown in figure 24.

A bonus information not to be underestimated is the fact that both DNASAND
and ZEBRA not only provide the information whether two sequences are simi-
lar enough to try a sequence alignment, but they also provide the approximate
offset for the sequence alignment. This information is valuable because it lo-
cates the approximate entry points of such an alignment in the alignment ma-
trix and therefore allows to reduce the computational complexity – and with it
the time needed – for a SW alignment with two sequences drastically.

Let n1 and n2 be the length of the sequences, m the approximate length of the
overlap and k a safety margin of indels that might arise in the alignment of the
overlap. It is clear that

m ≤ min(n1, n2)

is always true for every possible configuration of m, n1 and n2. Furthermore

55

4.3. SYSTEMATIC MATCH INSPECTION Thesis

k
m

n2

n1

s

eo

Figure 24: Smith-Waterman banding. n1 and n2 are the length of the se-
quences. Instead of computing the whole matrix (n1 ∗ n2 cells), only a small
band within the approximated area of the overlap must be computed: o is the
approximated offset from sequence 1 to sequence 2 in the alignment, m the ap-
proximated length of the overlap and k the band width to be calculated. s is
the predicted starting point for the recursive path drawing algorithm and e the
predicted exit area.

one can assign k to be

k =
1
10
∗m where typically 30 ≤ k ≤ 70

The higher k, the more tolerant the algorithm will be regarding slightly false
approximations of alignment path entry-points or the more non-compensated
indels can occur in one of the sequences. Using the values mentioned above
ensures a sufficiently wide and adaptable security margin for the length of se-
quences that have to be aligned in a shotgun assembly while keeping k linear
within bounds.

While the normal Smith-Waterman alignment will need O(n1 ∗ n2) time to
compute the alignment matrix, the banded version will need only

O(k ∗m) / O(
1
10

m2)

to compute the band through the matrix where the alignment is supposed to be.
For n1, n2 being typically between 300 and 1200 and normally

m � n1 ∗ n2

56

4.3. SYSTEMATIC MATCH INSPECTION Thesis

o1

o3

o2

S1

S1

S1

S2

S2

S2

o3

o2

o1

Figure 25: Smith-Waterman band prediction. According to the offset predic-
tion from DNASAND and ZEBRA-BLOCKING (examples o1, o2 and o3 in the
figure), different bands can be computed, all differing in length. These exam-
ples show particularly well how the O(n2) Smith-Waterman calculation of a
matrix can be effectively scaled down to less than O(n).

so O(k ∗m) can be seen to have mostly a less than linear complexity compared
to the square complexity of O(n1 ∗ n2).

Note that although methods for linear-space alignment methods have been
devised8, these have not been implemented for the time being as typical shot-
gun fragment lengths are small enough to allow quadratic space algorithms.

The changes needed to adapt the SW algorithm are minimal. A small logical
overhead is needed to segment the band and the matrix to facilitate computa-
tion. Additionally – and assuming the alignment matrix is calculated row by
row – the left and right edge of each row must calculated with a slightly adapted
algorithm to take care that the recursive alignment algorithm afterwards will
not run out of the band.

Cells outside the calculated band are assigned to have a very high value,
e.g. the INTMAX value, which is defined to be the highest integer value that
can be represented within a given integer datatype. In practice, to avoid the
O(n2) complexity of filing the whole matrix, only the matrix cells adjacent to
the calculated band are initialised. This constitutes a ’fence’ that the recursive
path alignment algorithm will not be able to transgress later on and make sure
that all alignments found later will stay within the calculated band.

The calculation of cells that are not on the edges (the ’a’ cell in figure 26) is

8for example see Chao et al. (1994); Grice et al. (1997) for an overview and Chao et al. (1995)
for an application

57

4.3. SYSTEMATIC MATCH INSPECTION Thesis

b a c

Figure 26: Smith-Waterman (SW) band calculation predecessor rules. The
figure shows a section of a larger SW matrix. The grey cells represent the
border of the band within the matrix, arrows show the predecessor cells needed
to compute a cell. Most cells in a band will be of type (a), i.e., cells with normal
predecessor rules like in a normal SW matrix. Cells on the border of the band
(b) and (c) need special handling as they only have two (different) predecessor
cells instead of three.

performed like in a normal SW algorithm:

Hi1,i2 = max

Hi1−1,i2−1 + score(S1

i1
,S2

i2
)

Hi1,i2−1 + score(S1
i1

, ∗)
Hi1−1,i2 + score(∗,S2

i2
)

0

while each cell on the left edge in a row (the ’b’ cell in figure 26) must not
consider the fence value to its left and consequently is calculated using

Hi1,i2 = max

Hi1−1,i2−1 + score(S1

i1
,S2

i2
)

Hi1−1,i2 + score(∗,S2
i2

)
0

Similarly, each cell on the right edge in a row (the ’c’ cell in figure 26) must not
consider the fence value to its top, so that the calculation is done using

Hi1,i2 = max

Hi1−1,i2−1 + score(S1

i1
,S2

i2
)

Hi1,i2−1 + score(S1
i1

, ∗)
0

58

4.3. SYSTEMATIC MATCH INSPECTION Thesis

Table 2: Extend version of the matrix shown in table 1. Here, comparisons of
Ab with endgaps (∇) or with “N” are score neutral.

A C G T N ∗ ∇
A 1 -1 -1 -1 0 -2 0
C -1 1 -1 -1 0 -2 0
G -1 -1 1 -1 0 -2 0
T -1 -1 -1 1 0 -2 0
N 0 0 0 0 0 -2 0
∗ -2 -2 -2 -2 -2 0 0
∇ 0 0 0 0 0 0 0

4.3.2 Parametrising Smith-Waterman alignment

Several scoring schemes for SW alignments have been devised within the last
two decades, ranging from the simple original one (Smith et al. (1981)) to meth-
ods accounting for gap lengths using affine gap calculation and even align-
ments of sequences against trace signals. Most publications that appeared
analyse and discuss the complexity of dynamic programming and scoring func-
tions. Even very formal but systematic and generally applicable methods to
build early prototypes for these algorithms were presented (see also Giegerich
(2000)). Althaus et al. (2002) proposed a multiple sequence alignment (MSA)
with arbitrary gap costs which computes an optimal solution using polyhedral
combinatorics, but having only two sequences at a time to score.

Arslan et al. (2001) presented a method that used iterated Smith-Waterman
computations with fractional programming with a run time of O(n2log(n)) –
which is already higher than the O(n2) of standard Smith-Waterman – to nor-
malise the score of sequence alignments. Their experimental results suggested
that the number of required iterations were small, but they could not establish
a satisfactory theoretical lower- / average- / upper-bound for the growth in the
number of iterations needed.

Good alignments base on an appropriately chosen scoring scheme given to
an optimisation model. A slightly improved original Smith-Waterman scoring
scheme has been opted for simplicity, speed and sufficient sensitivity and speci-
ficity of a first alignment approximation. The Smith-Waterman alignment al-
gorithm uses the weight matrix W given in table 2 to calculate an alignment
score.

As can be seen by the values of W , this scoring scheme reflects ideally the
requirements that alignments of shotgun sequences with some degree of errors

59

4.3. SYSTEMATIC MATCH INSPECTION Thesis

Table 3: Default penalty scores inflicted to the score calculated with a weight
matrix. Each gap of a given length reduces the original score by a specified
penalty.

gap length in bases penalty in %
1 0
2 5
3 10
4 20
5 40
6 80

7+ 100

contained: one can assume a ’mismatch’ of a base against a ’N’ (symbol for aNy
base) to have no penalty as in many case the base caller rightfully set ’N’ for a
real, existing base (and not an erroneous extra one) that could not be resolved
further. But to show that this still constitutes a minor reason for being careful,
a ’N’ gets a neutral score instead of a match.

The scoring algorithm can be improved further by taking into account that
– regarding the fact that todays base callers have a low error rate – the block-
indel model (see Giegerich and Wheeler (1996)) does not apply to the alignment
of shotgun sequencing data: long stretches of mismatches or gaps in the align-
ment are less probable than small, punctual errors. In fact, more than two gap
symbols following each other in an alignment of shotgun sequences is a distinct
signal that either the sequences should probably not be assembled together or
that something went wrong in the laboratory or during signal processing (base
calling). For this reason, a configurable penalty function has been added that
scales down the score calculated through the scoring matrix W in relationship
to the number and length of gaps within an alignment. The penalties used are
shown in table 3. This is a post-processing normalisation algorithm which is not
dissimilar to the methods proposed by Pearson (1995) and Shpaer et al. (1996).

In addition, a second score – the expected score – is calculated using the score
matrix represented in table 4. It can be deduced by the matrix values that this
second score represents the score expected if the alignment was perfect, i.e.,
without errors. Consequently

score ≤ scoreexpected

60

4.3. SYSTEMATIC MATCH INSPECTION Thesis

Table 4: Scoring weight matrix for the expected score
A C G T N ∗ ∇

A 1 1 1 1 0 1 0
C 1 1 1 1 0 1 0
G 1 1 1 1 0 1 0
T 1 1 1 1 0 1 0
N 0 0 0 0 0 1 0
∗ 1 1 1 1 1 0 0
∇ 0 0 0 0 0 0 0

is always fulfilled. Note that it is not possible to take the length of the overlap
as expected score, because ’N’ bases are treated as neutral in score calculation.
They therefore cannot get a better score in the calculation of the expected score
as this would mean there is an error although it is still assumed that an ’N’ is
a correctly found base.

4.3.3 Attributing an alignment overlap

It is now trivial to make a “rough guess” of the alignment quality of the overlap
by calculating the score ratio.

Rs =
1

scoreexpected
∗ score with Rs = 0 for

{
score < 0
scoreexpected = 0

and therefore
0 ≤ Rs ≤ 1

A score ratio of 0 shows that the two sequences do not form a valid alignment
while a ratio of 1 means a perfect alignment without gaps or base mismatches.9

A problem left open up to now is the question on how to subsume the differ-
ent quality criteria i) length of the overlap and ii) score ratio into one pregnant
figure (the overlap weight) so that overlaps can be ranked easily and compre-
hensibly.

The simplest method would be to multiply both values to get a weighted
length of the overlap. Let leno be the length of the overlap, so the desired weight

9but perhaps one or several aligns of a base against an ’N’

61

4.3. SYSTEMATIC MATCH INSPECTION Thesis

Computed Score: 180

Accepted match

Score ratio: 92%

Weight: 1518117

Expected Score: 196

Figure 27: A modified Smith-
Waterman algorithm for local align-
ment is used to confirm or reject
potential overlaps found in the fast
scanning phase. Accepted overlaps
get a weight assigned depending on
the length of the overlap and align-
ment quality.

Rejected match

Score ratio: 65%

Expected Score: 204
Computed Score: 133

Figure 28: Although having a good
partial score, the overall score ratio
of this alignment is too low to be ac-
cepted. This read pair is eliminated
from the list of possible overlaps.

wo of this overlap could be computed by

wo = leno ∗Rs

But this approach attributes far too much weight to the length than it does to
the score ratio, which is – after all – the predominant measure for the quality.
For example, an overlap of length 650 bases with a score ration of only 0.65 (65%
similarity) would get a higher weight (422) than an undeniably better overlap
of length 400 bases and a score ratio of 0.9 (90% similarity, weight: 360). This
problem can be easily circumvented by squaring the score ratio, giving it more
importance in the calculation:

wo = leno ∗ (Rs)
2

The first overlap would then get a weight of 274 and the second 324, which is
exactly the desired outcome.

Every candidate alignment overlap pair whose score ratio is within a con-
figurable threshold (normally upward of 70% to 80%) and where the length of
the overlap is not too small is accepted as ’true’ overlap, candidate pairs not
matching these criteria – often due to spurious hits in the scanning phase – are
identified and rejected from further assembly (see figures 27 and 28).

62

4.3. SYSTEMATIC MATCH INSPECTION Thesis

Read
Forward overlap
Reverse complement overlap
Overlap not accepted by SW

1

2

3

4

5

6

Figure 29: An overlap graph generated from the aligned overlaps that passed
the Smith-Waterman test. The thickness of the edges represents the weight of
an overlap. Although the (1,6) overlap is marked for demonstration purposes
in this figure, rejected overlaps (due to spurious hits in the scanning phase, see
figure 23) are not present in the graph.

4.3.4 Building a graph

The overlap alignment – along with complementary data (like orientation of the
aligned reads, overlap region, score, score ratio etc.) – is called an aligned dual
sequences (ADS). Every ADS that passed the Smith-Waterman test is kept in
memory to facilitate and speed up the next phases. Good alternatives are also
stored to enable alternative alignments to be found later on in the assembly.

All the ADS form one or several weighted graphs which represent the total-
ity of all the assembly layout possibilities of a given set of shotgun sequencing
data (see figure 29). The nodes of the graph are represented by the reads. An
edge between two nodes indicates that these two reads are at least partially
overlapping and can be aligned. Each graph sketches the alignment possibili-
ties of reads for at least one contig. Hence, the number of non-connected graphs
is equivalent to the minimum number of contigs the assembler will be able to
build.

The edges themselves are attributed with the score weights computed for the
overlaps and stored in the ADS.

63

4.4. BUILDING CONTIGS Thesis

4.4 Building contigs

The overlaps found and verified in the previous phases must then be assembled
into contigs. This is the most fundamental and intricate part of the process,
especially in projects containing many repetitive elements. Several basic ap-
proaches to the multiple alignment problem have been devised to tackle this
problem. Although algorithms for aligning multiple sequences at once have
been used with increasing success lately for up to 10 to 15 sequences (Stoye
(1998)), the amount of time needed to perform this alignment is still too unpre-
dictable – ranging from a few seconds to several hours – to be used in sequence
assembly.

Reinert et al. (2000) conducted experiments on iterative methods for faster
sum-of-pairs with a divide-and-conquer alignment approach (using a A ∗ algo-
rithm) and quasi-natural gap costs for multiple sequence alignments. Schloss-
hauer and Ohlsson (2002) devised an algorithm based on fuzzy recast of dy-
namic programming algorithms in terms of field annealing to score the reliabil-
ity of sequence alignments. These methods also show varying runtimes rang-
ing from a few seconds to hours for a relatively low number of sequences, far
lower that the realistic number of sequences encountered in real world assem-
bly projects.

Due to these problems, it was decided to use iterative pairwise sequence
alignment and devise new methods for searching overlap candidates. A key
concept is empowering contigs to accept or reject reads presented to them dur-
ing the contig building. The algorithm consists mainly of two objects which
interact with each other: a pathfinder module and a contig building module.

4.4.1 Pathfinder and contig interaction

Because an iterative approach is used to the multiple alignment problem – this
means one always successively aligns an existing consensus against the next
read – the results of the alignment sensitively depends on the order of pairwise
alignments (Morgenstern et al. (1996)). As a direct consequence it is therefore
preferable to build contigs using overlaps with reliable and high quality first
and then continue with lower quality.

Hence, one has to make sure to start at the position in the contig where there
are as many reads as possible with almost no errors. The pathfinder will thus –
in the beginning – search for a node in the weighted graph having a maximum
number of highly weighted edges to neighbours. The idea behind this behaviour

64

4.4. BUILDING CONTIGS Thesis

is to take the read with the longest and qualitatively best overlaps with as many
other reads as possible and use this one to ensure a good starting point: the
’anchor’ for this contig.

A necessary constraint proved to be that the weight of the edges selected must
not fall below a certain threshold as it is not infrequent to have a considerable
number of relatively short reads with repetitive element contained in many
projects. This introduces a sort of ’gravity well’ in the assembly graph and
misleads the algorithm to take a read with dangerous repetitive characteristics
as anchor, which is generally not the intended behaviour.

The next step consists of determining the next read to add to the now existing
contig by analysing nodes (reads) from the contig in the graph and determine
which edge (overlap) with a node – not belonging to the contig – provides the
most profitable overlap to augment the information contained within the contig.

There are theoretically two distinct approaches to perform this operation:

1. Backbone strategy: extend the existing contig in length with new, formerly
not present data at the extremities of the contig

2. In-depth coverage strategy: improve the quality of the existing consensus
by adding reads that increase coverage and thus increase base probabili-
ties in the consensus

Both approaches have their specific advantages and disadvantages which will
be discussed briefly.

Extending the contig length first implies the quality of the reads to be re-
liably high anytime and anywhere. This cannot be guaranteed for sequences
extracted by electrophoresis and subsequent base calling as base probability
values do not exist for every base calling method. The backbone strategy can
also be easily affected by repetitive short and long subsequences in the target
DNA if additional assembly support information is not available. On the other
hand, once the backbone of the assembly has been constructed, adding more
reads to reduce base calling errors step by step is trivial.

Increasing the coverage of a contig first – by adding reads containing mostly
sequences already known – ensures that the base qualities of the consensus
raise rapidly: more reads that cover a consensus position make consensus er-
rors introduced by bad signal quality and subsequent base calling errors in-
creasingly improbable. Reads added afterwards have thus an increasing prob-
ability to align against a right consensus sequence. The disadvantage of this
method appears when parts of a contig are only covered by low to medium qual-

65

4.4. BUILDING CONTIGS Thesis

A

C

D

E

F

B
n Overlap with weight n

Rest of graph

x Read x

6

4

5

5

3
1

5

2

Figure 30: Example for an assembly graph (to be studied together with figure
31 on page 67 that causes problems when using a simple greedy algorithms,
assuming that read B is a chimeric sequence.

ity reads. The increased coverage results in a growing number of discrepancies
between read bases, leading to incorrect an consensus and sometimes stopping
the assembler from adding reads to a contig where there is theoretically a pos-
sibility to continue.

4.4.2 Path traversal strategies

The assembly graphs build in the previous step have the unpleasant character-
istic to be quite large even for small assemblies. In case of multiple – almost
identical – repeats, the number of edges present in the graph explodes. Figure
30 shows a part of a much bigger graph used as example in this section.

Simple greedy algorithm

A simple greedy algorithm was first tried to find overlap candidates in the
assembly graph, but on occasions – especially in highly repetitive parts of a
genome or with chimeric reads10 in low coverage sequencing – this algorithm
fails. Figures 30 and 31 demonstrates how the simple greedy algorithm in con-
junction with a chimeric read can provoke the termination of contig building
while there exist possibilities to extend it further. This also corresponds to the
results that have been reported previously by Myers (1994).

10Chimeric reads, as described in section 2.2.2, must be considered as garbage.

66

4.4. BUILDING CONTIGS Thesis

C

D

C

D

A

B

A

E

F

Figure 31: Example continued from figure 30 for a failure of the simple greedy
algorithm (left side): read B is a chimeric read that has a strong overlap with
read A, but would lead into a dead end of the assembly. A recursive look
ahead strategy discovers contradictions between reads before they are assem-
bled (right side): read B is automatically not used in the assembly.

n, m-step recursive look-ahead strategy

The current algorithm is an extension of the greedy algorithm. The pathfinder
will search for the n best edges leading from nodes that are already inserted
in the contig to nodes that have not been used yet. These n new nodes are
inserted in n partial look-ahead paths as potential next alignment candidates.
Each partial path is then descended recursively for a maximum of m recursions,
repeating in each step the selection of the n next best edges. In the end the
pathfinder designates the next read to add to an existing contig by taking the
edge leading to the first node that is contained in the best partial path found so
far, i.e., the partial path with the best summed score of its edges wins. It then
presents the read which the edge led to – and its approximate position – to the
contig object as potential candidate for inclusion into the existing consensus.

By performing an in-depth analysis – with a cutoff value of normally 4 or
5 recursions – of the weights to neighbouring reads contained in the assem-
bly graph, the n, m recursive look-ahead strategy can substantially reduce the
number of misalignments as chimeric reads get only a very small chance of get-
ting aligned. At the same time, reads containing repetitive elements will not
get aligned without ’approval’ from reads already in the contig and reads to be
aligned afterwards.

67

4.4. BUILDING CONTIGS Thesis

4.4.3 Contig

A contig is represented by a collection of reads that have been arranged in a
certain order with given offsets to form an alignment that is optimal. The prob-
lem lies in the definition ’optimal’ as different criteria like length, coverage,
number of inconsistencies and others can be applied. The usual definition of an
SCS (shortest common superstring) alignment given in literature leads in many
cases to over-compressed alignments, especially when repeats are present. On
the other hand, defining an alignment to be optimal when it has the least pos-
sible number of inconsistencies leads to alignments that are too long.

To elude these problems known in literature, an alignment has been defined
to be optimal when the reads forming it have as few unexplained errors as
possible but still form the shortest possible alignment.

For this purpose the contig object has been provided with functions that anal-
yse the impact of every newly added read (at a given position) on the existing
consensus. The assumption is now that – as the assembly presumably started
with the best overlapping reads available – the bases in the consensus will be
right at almost every position. Should the newly added read integrate nicely
into the consensus, providing increased coverage for existing consensus bases
and perhaps extending it a bit, then the contig object will accept this read as
part of the consensus.

In some cases the assembly graph will contain chance overlaps between oth-
erwise unrelated reads. Should such an overlap be good enough to be chosen
by the pathfinder algorithm as next alignment candidate, the read will most
probably differ in too many places from the actual consensus (thus differing in
many aspects from reads that have been introduced to the consensus before).
The contig will then reject the read from its consensus and tell the pathfinder
object to search for alternative paths through the weighted overlap graph. The
pathfinder object will eventually try to add the same read to the same contig
but at a different position or – skipping it – try other reads.

Once the pathfinder has no possibilities left to add unused reads to the actual
contig, it will again search for a new anchor point and use this as starting point
for a new contig. This loop continues until all the reads have been put into
contigs or – if some reads could not be assembled anywhere – form single-read
contigs.11

11Of course, a single read itself cannot be called a contig. But putting it into the same data struc-
ture (a contig object) like the other, assembled reads is a convenient way to keep unassembled
reads in a database.

68

4.4. BUILDING CONTIGS Thesis

2

6

5

43

1

Read
Forward overlap
Reverse complement
overlap

Figure 32: Assembly graph from figure 29 used as example in section 4.4.4.

4.4.4 Contig approval methods

Myers et al. (1996) proposed using constraints in progressive multiple align-
ment. The idea has been extended toward the object acceptance method de-
scribed in this section. As mentioned briefly above, each contig object has the
possibility to reject a read being introduced into its consensus. This is one of
the most crucial points in the development of the assembler: allowing presum-
ably good building blocks, i.e. reads with high quality, to start an assembly is
a decisive step in the ongoing assembly process, but the contig must actively
decide upon all available data if the reads proposed to it are good enough to be
assembled. This allows to use explicit knowledge available in reads that are
known to be good and the implicit knowledge present in the assembly.

The simplest behaviour of a contig could be to simply accept every new read
that is being presented as part of the consensus without further checks. In this
case the assembler would thus rely only on the weighted graph, the method
with which the weighted edges were calculated and the algorithm which tra-
verses this graph. Figure 33 shows this exemplarily for the reads from the
example set up above. Although there are four columns having discrepancies,
the assembly looks quite reasonable.

Acceptance upon actual consensus constraints

Every read added to a contig must match the consensus build by previously
inserted reads. As the overall working mechanism of the assembly algorithm
will insert reads with good quality and strong overlaps into a contig first, there

69

4.4. BUILDING CONTIGS Thesis

1
2

3
5

4
6

Figure 33: Example of simplest possible assembly which does not take ad-
vantage of additional knowledge. Reads are assembled as the algorithm walks
through the path, the checkmarks showing the reads have been accepted as
matching to the contig. Black squares mark discrepancy columns not having
the same bases. Continued in figure 34.

is a reasonable chance to believe that the actual consensus formed by these
reads is quite correct up to a certain threshold.

If a newly inserted read shows too many discrepancies to the actual consensus
sequence, the contig will invariably reject this read and the edge representing
the corresponding overlap will be removed from the assembly graph. The main
reasons for overlaps of this type being present in the assembly graph include
spurious matches that slipped through Smith-Waterman, repetitive sequence
and chimeric reads.

Repeat marker tags

However, using additional information that is available at the time of assembly
proves useful. For example, known standard repetitive elements – e.g. the so
called ALU repeat type in human genome – can easily be tagged in the data pre-
processing step of the assembly. It is therefore possible to apply much stricter
control mechanisms in those stretches of a sequence known to be repetitive and
therefore dangerous to the assembly process. In many cases, the copies present
across different regions of a genome are up to 98% to 99% similar, hence the
necessity to be able to decide upon a few bases that might really differ.

In case of repetitive sequences, each discrepancy between a newly inserted
read and the actual consensus is treated as single-base error region, i.e. the
explanation of the possible base-call error to be analysed has to be searched in
the immediate vicinity of the base. The question the simple signal analysis (see
the following section) has to answer is if whether or not it is possible – that
is, if there is enough evidence in the trace data – to substitute the offending
base of the new read against the base calculated in the consensus. If signal

70

4.4. BUILDING CONTIGS Thesis

2
1
3
5
6
4

ALU

Figure 34: Using additional information on standard repetitive stretches, the
contig object checks the repeat regions more thoroughly and rejects reads that
have too many errors that cannot be explained by signal analysis. Example
continued in figure 35 on page 73.

analysis reveals that it is possible to substitute bases, the error is treated as
’explainable’ error and it is treated as ’unexplainable’ if not.

If the percentage of ’unexplainable’ errors in the repetitive region surpasses
a certain threshold (default value is 1%), then the newly inserted read will be
rejected from the consensus and its node put back into the assembly graph as
shown in figure 34.

Simple signal analysis

The best method to adjudicate on conflicting bases of different reads is to per-
form signal analysis, going back to the original trace data produced by the se-
quencing machines. This labour intensive task is normally executed by highly
trained personnel although in a significant number of cases it is fairly easy to
decide on conflicting readings by analysing the trace data.

Two different computational methods have been established in the past years
to adjudicate om conflicting bases in reads. The probably most common method
is the usage of quality values first introduced by Staden (1989) and further de-
veloped by Bonfield et al. (1995a). The concept was then refined to probability
values by Ewing and Green (1998). Base probability values are experimen-
tally gained, position-specific probabilities of error for each base-call in a read
as a function of certain parameters computed from trace data. Probability val-
ues are of high value for finding bases with weak quality, but these values are
mostly only available for the called bases, not for uncalled ones. For an assem-
bler, it is a big drawback not to have the capability to search for alternative
base-calls that might have been possible at the same position in the trace.

71

4.4. BUILDING CONTIGS Thesis

Another suggestion on incorporating electrophoresis data into the assembly
process promoted the idea of capturing intensity and characteristic trace shape
information and provide these as additional data to the assembly algorithm
(Allex et al. (1996, 1997)). Although methods for storing alternative base calls
and other data have been suggested (Walther et al. (2001)), the approach from
Ewing and Green (1998) produces results that are simple to handle and appar-
ently ’good enough’ so that it has imposed itself as standard over the years.

Complex shape approaches were discarded early in development of the algo-
rithms for the assembler as essentially all the contig – and with it the consensus
computing algorithm of a contig – needs to know is if the signal analysis reveals
enough evidence for resolving a conflict between reads by changing the bases
incriminated. This question is a simple working hypothesis which is a subset
of the hypotheses generated by the automatic editor devised by Pfisterer and
Wetter (1999).

It is possible to call the automatic editor in analysis mode to have this spe-
cific questions analysed. The conditio sine qua non for the assembly algorithm
is that the signal analysis does not try to find support for a change of the pos-
sibly faulty base with “brute force”. This would lead into the doctrine to use
high quality sequence to adjust presumably low quality sequence, which is a
complete contradiction of the working principle of using high quality data to
explain errors in low quality sequences and correct them only if the low quality
data supports the new theory.

In fact, the analysis is executed with the uttermost cautiousness and the sig-
nal analyser will support a base change only if hard evidence for this hypothesis
can be found in the trace signals. Otherwise the assembler treats signal anal-
ysis as a black box decision formed by an expert system, only called during the
assembly algorithm when conflicts arise. But this expert system provides nev-
ertheless additional and more reliable information than the information con-
tained in quality values extracted from the signal of one read only (compare to
Durbin and Dear (1998)): there is a reasonable suspicion deduced from other
aligned reads on the place and the type of error where the base caller could
have made a mistake by analysing only a single read.

Figure 34 shows this information – along with a new assembly that took
place – using the knowledge that repetitive elements must be checked much
more strictly. In this new assembly, read 5 and read 4 were rejected from the
contig as the pathfinder tried to enter them, because they induced errors into
the already existing contig formed by the reads 2-1-3 (when adding read 5) and
2-1-3-6 (when adding read 4).

72

4.4. BUILDING CONTIGS Thesis

2
1
3
6

5
4+

ALU
ALU

Figure 35: Example continued from figure 34 on page 71. Using strict signal
checking in the ALU repeat region, unexplained errors in a first iteration of
the assembler lead to the formation of two contigs in the second iteration. In
this second iteration, no unexplained errors remain in the ALU region which is
known as dangerous. Example continued in figure 39 on page 86.

The contig object failed to find a valid explanation to this problem when call-
ing the signal analysis function – provided by the automatic editor – that tried
to resolve discrepancies by investigating probable alternatives at the fault site.
Figure 35 shows the result of the assembly that began in figure 34. There is not
enough evidence found in the conflicting reads to allow a base change to resolve
the discrepancies arising. There is also the additional knowledge that these
non-resolvable errors occur in an area tagged as ’ALU-repeat’, which leads to
a highly sensitive assessment of the errors. Consequently, the reads 4 and 5
– containing repetitive sequence which the first contig object could not make
match to its consensus – form a second contig as shown in the example.

Template size constraints

Large scale sequencing projects nowadays mostly use dual ended sequencing
techniques as they provide valuable supplementary layout information for lit-
tle cost overhead. With this technique both ends of a subclone (template) are
sequenced so that normally two reads are generated for each template. Using
short subclones of approximately 2 kilobases there is even a good probability
that the reads will overlap in their ends.

The first constraint that can be deduced from this is the fact that – whenever
the two reads belonging to a template can be inserted into the same contig –
both reads have to be on opposite strands. As the approximate template size is
also known, the second – equally important constraint – specifies a size range
for both reads belonging to a template to be placed in the contig.

Large projects12 are often sequenced using subclone libraries of different
sizes. This can be done purposely to help building assembly scaffolds solely

12cosmid, BAC or even whole genome size

73

4.4. BUILDING CONTIGS Thesis

from overlap information and size constraints (Gene Myers’ keynote on the Ger-
man Conference on Bioinformatics (GCB) 99: ”A Whole Genome Assembler for
Drosophila”). It can also be a direct implication of the re-sequencing of certain
parts of a project.13 The insert size of a template is therefore a template specific
information that must be read from experiment files as additional assembly in-
formation and cannot be given as general parameter.

If the read is the first of a template to be inserted, the contig will accept
it without checking template constraints. In case the newly added read is the
second, the contig will check the constraints discussed above and reject the read
if either one is not fulfilled.

4.4.5 Consensus and consensus quality computation

Calculating the consensus and its quality is not trivial and many groups have
proposed different strategies, ranging from the simplest sum-of-scores to algo-
rithms using simulated annealing (Keith et al. (2002)), none of which is really
optimal when base error probability values are available. The method devel-
oped for this thesis has a basic idea which is quite simple: go through each
column of an alignment, calculate a group quality for each base and take the
base with the highest group quality. The quality values of bases encode – if
present – error probabilities, which in turn are used to give an assessment of
the quality of the consensus base they are part of. Using the definition of align-
ments in chapter 2 where an alignment L is

L =

 s11 . . . s1n

...
sk1 . . . skn

with each element sij ∈ AG. A single column at position i within that alignment
is defined as

Ci =

 s1i

...
ski

13for example to close gaps

74

4.4. BUILDING CONTIGS Thesis

which can also be seen as a simple vector. For the sake of simplicity, the vector
only contains bases from Ag instead of AG as endgaps (∇) do not really count
as valid character.

Two more vectors can be defined by recording the error probability for each
base and the direction of each sequence in the alignment:

Pi =

 p1i

...
pki

and

D =

 s1

...
sk

Note that the D vector does not need to be made for each column separately as
– understandably – sequences in an alignment have exactly one direction which
does not change for each base.

Should discrepancies in the called bases occur in this column, the probability
for an error will be computed for each base character group separately. Two
main points must be considered when setting up a formula to compute this
probability:

– there must be a limit in the number of error probabilities used to prevent
overrepresented bases – but with a high error probability – to take ad-
vantage over a low number of bases with low error probabilities. This is a
problem especially encountered in non-normalised EST projects.

– probabilities coming from different sequencing directions should deserve
a higher weigh than those coming from the same direction. This is a trib-
ute to the sequencing methods currently used as there are sometimes se-
quence specific problems occurring.14 Fortunately, when the other strand
is sequenced, most – if not all – problems related to this will vanish.

As a first step, the probability values can be grouped together by base and

14e.g. the infamous AG-problem known with the ABI 373 and 377 machines where a G preceeded
by an A is often unincisive

75

4.4. BUILDING CONTIGS Thesis

direction of the sequence in the alignment:

∀
c ∈ Ab

Pi(c)+ =

 p1i

...
pki

 with sxi = c and D(sx) = +

and

∀
c ∈ Ab

Pi(c)− =

 p1i

...
pki

 with sxi = c and D(sx) = −

E.g., all bases with an A from sequences in forward direction are taken to-
gether in the Pi(A)+ group probability, bases with an A from sequences in re-
verse complement direction are taken in the Pi(A)− group probability.

Each of the Pi(c) vectors is now sorted by value from low to high. The results
are sorted vectors PS of error probabilities, for each base and each direction
one.

PSi(c) = sort(Pi(c))

For the next step, the vectors are pruned to contain a maximum of n lowest
probability entries. The motivation for this step is loosely modeled after the
entropy calculation theorem of the information theory. Grossly oversimplified,
this theorem stipulates that the more information snippets sustaining one sin-
gle fact are present, the less a single snippet of information itself is worth. Once
the probability vector was sorted by value with the lowest values first, taking
only the first n lowest values discards only those error probabilities that would
not add much to the information itself.

In the next step, the inverse of the probability values are summed up, starting
with the highest inverse and modifying the values with a decreasing scalar:

IG(c)+/− =
n

n

1
PS1(c)+/− +

n− 1
n

1
PS2(c)+/− + ... +

1
n

1
PSn(c)+/−

The formula above ensures that the lowest error probability adds most of the
information, with the following probabilities adding less and less until trailing
off to zero. The probability for each directed base group is computed with the
inverse of I(c):

76

4.4. BUILDING CONTIGS Thesis

9/10*100
10/10*398

8/10*32
115

+

PS (A)
G

+
+
+

−

−
−

+ 1240

+

9/10*100

7/10*100
8/10*100

10/10*1000

G= I (A) −

G= I (A) +

P (A)
G

=

= 1
6363120

*
1

1151240
1

A

CD

A
A
A
A
A
A 1/32

1/100
1/398
1/100
1/100
1/100

1/1000 1000
100
100
100
398
100
32

Figure 36: Simple example for calculating the group quality of base column.
For the sake of simplicity, the vectors for the bases (C), their directions (D) and
error probabilities (PSG(A)) were already sorted by the probability values. The
n factor has been set to 10 in this example, meaning that none of the vectors
had to be pruned.

PG(c)+/− =
1

IG(c)+/−

As last step, the total group error probability is computed by multiplying both
directed group probabilities:

PG(c) = PG(c)+ ∗ PG(c)−

with the special cases that PG(c)+/− = 1 for each of the non-existing directed
quality groups and PG(c) = 0 if both do not exist. See figure 36 for an example.

Once such a group quality has been computed for every base character of
a column, the character with the highest group quality wins and is taken as
consensus base for this column. When using IUPAC consensus characters, base
characters with a certain minimum group quality – e.g. an error probability of
less than 0.001 which equals a quality value of 30 and more – are taken to form
the IUPAC consensus base.

77

4.5. AUTOMATIC EDITING Thesis

4.5 Automatic editing

Up to this point, the mira assembler has put all reads into contigs, forming
singlets for reads that could not be assembled anywhere. Assembling sequences
with discrepancies in alignments induces the necessity to use other methods
for dealing with possible base call errors that might be present in reads and
introduce discrepancies or misassemblies in the assembly. This is entirely done
by an incorporated version of the automatic editor developed by Pfisterer and
Wetter (1999).

Previous solutions like the one presented by Xu et al. (1995) only used a dy-
namic programming algorithm and majority vote to adjudicate conflicting base
positions. The main advantage of using an automatic editor is that decisions
taken are based on the original trace signals and not on majority assumption.
Different assumptions (hypotheses) on what could have gone wrong during the
sequencing or base-calling process are established and inspected.

Although the exact methods and algorithms of the editor are not subject of
this thesis, a short abstract on the strategy used is nevertheless included at
this place to give an overview on the operations performed:

The editor steps through the contigs column by column and
searches for discrepancies between the bases of a column. Once
a discrepancy is found, the editor will build an enlarged error
region where it will test different base-calling error hypothe-
ses in the reads present at this position. Enlarging the error
region is necessary as clustered errors tend to obfuscate the
true nature of the errors occurring in different reads because
of an awkward multiple alignment. The most probable com-
plex error hypotheses are then split into atomic fault hypothe-
ses (AFH), each AFH describing an insert/delete/base change
operation needed in one read to correct the whole error region.
Each AFH is being tested by applying up to 30 different quality
measures – depending on the type of atomic error hypothesis –
directly to the underlying trace signal of a read.

The signal quality measures analysed can be roughly classified
into four categories: peak shapes, peak positions, peak distance
and peak intensity. Relevant decision information is then ex-
tracted from the calculated measures by a neural network. The
network decides whether the atomic fault hypothesis can be

78

4.6. FINDING UNKNOWN REPEATS Thesis

confirmed by looking at the trace signals.

Although error hypotheses in regions involving complex base shuffling have a
lower likeliness to be confirmed, they will be edited if they are the only possible
solution that is supported by the trace signals. Using this methods ensures a
maximum of safety for the assembler that editing decisions do not contradict
the underlying trace signals. It can therefore – in contrast to simpler programs
like ReAligner presented by Anson and Myers (1997) – also be seen as an im-
proved method of realigning sequences to improve consensus quality.

4.6 Finding previously unknown repeats

Correct handling of repeats belongs to the most difficult problems an assembler
has to perform. This section gives a short introduction to different types of re-
peats, the current methods to find and adjudicate them and present the method
used in the assembler.

4.6.1 Repeat types

Repeats can be classified in the following categories:

1. Simple multiple bases where the repeat consists of a specific base present
k time. Example: AAAAAAAA... Because of their usually short nature
(the repeat will be far shorter than the average length of a read), simple
multiple base repeats are not really problematic for an assembler unless
they are very frequent. For longer stretches, the correct number of bases
can be off by one or two. This is due to problems for any base-caller to
correctly separate bases in trace signal stretches containing more than 5
to 6 equal bases when the trace quality is sub-optimal.

2. Micro-satellites where the repeat consists of a small number of bases
present k times and where some copies might present point mutations.
Example: multicopy CG in CGCGCGAGCGCG... or multicopy CAG in the
sequence CAGCAGCTGCAG... Micro-satellites too are far shorter than an
average read and therefore mostly unproblematic to assemble.

3. Short repeats where copies of a medium number of bases are separated
by non-repetitive subsequences. The copies present an identity between
70% and 100%. In the human genome for example, ALU repeats are very

79

4.6. FINDING UNKNOWN REPEATS Thesis

common. Although short term repeats are mostly shorter than the av-
erage read length, the sheer number of occurrences and the sometimes
considerable identity can occasionally lead to misassemblies.

4. Long repeats are subsequences that contain up to several kilobases and
where the repeat is present at least in two locations and the identity
ranges from around 50% to 100%. Long repeats are the most difficult
cases to assemble, especially if the identity exceeds more than 90% to 95%
and the repeat itself is longer than the average read length.

The repeats of type 1 and 2 need no special handling routines as these are en-
closed by (mostly) non-repetitive subsequences which ensure the correct place-
ment of the read within an assembly. Repeats of type 3 (standard short term
repeats) are sometimes harder to place as they are generally longer than re-
peats of type 1 and 2. But they have the considerable advantage that stan-
dard repeats are well known sequences, documented throughout literature and
databases. Consequently, they can be searched for and tagged in the single
reads before the assembly process takes place, giving the assembler the possi-
bility to use the additional information gained during preprocessing.

From an assembler’s point of view, the most annoying repeats are those of
type 4. Segmental duplications – as an example for this type – are a special
cases of extremely large repeats with sometimes several tens or even hundreds
of kilobases. They play a fundamental role both in genomic diseases and gene
evolution. Mutation and natural selection of duplicate copies of genes can di-
versify protein function, which explains why they are now seen as one of the
primary forces in evolutionary change (Eichler (2001)). Bailey et al. (2001) note
that they typically range in size between 1 and 200 kilobases and often contain
special sequence features such as high-copy repeats and gene sequences with
intron-exon structure. Another interesting – but from the viewpoint of an as-
sembler rather annoying – recent discovery is the fact that, citing Delcher et al.
(2002), “chromosome-scale inversions are a common evolutionary phenomenon
in bacteria” and that some plants like the Arabidopsis thaliana contain large
scale duplications on the chromosome level. On a similar level of annoyance is
the fact that in grass genomes like rice, “most of the repeats are attributable
to nested retrotransposons in the intergenic regions between the genes” (Wang
et al. (2002)). Eichler (2001) observes that “exceptional duplicated regions un-
derlie exceptional biology”. For algorithms trying to resolve the assembly prob-
lem, they induce difficulties for in-silico computation and result in underrepre-
sentation and misassembly of duplicated sequences in assembled genome.

80

4.6. FINDING UNKNOWN REPEATS Thesis

4.6.2 Existing approaches

The most difficult task for an assembler consists in finding long term repeats in
an assembly and preventing reads to be assembled at wrong locations within a
contig. Suggestions to surmount this problem are sparse in literature and can
be classified into two main approaches.

The first approach consists of relying on base probabilities only and prevent
the alignment of reads that show too many discrepancies in high probability ar-
eas. This method is quick and its sensitivity can be easily adjusted. The advan-
tages, however, are outweighed by the disadvantages this method inherently
has: the assembler must rely solely on the ability of the analysing algorithms
of the base-caller to correctly adjudicate each base upon the trace signal only.
As good as current base-callers are nowadays, this cannot be guaranteed. Er-
rors happen in the base-calling process and if the sensitivity of the assembler
is set too high, the specificity of the repeat misassembly prevention mechanism
decreases sharply: many non-repetitive reads will not align because their er-
rors reach the repeat recognition threshold. Reads will thus not align although
they might otherwise perfectly match, which in turn constitutes a handicap for
the assembler when trying to build long contigs.

The second approach for repeat location assumes the shotgun process to pro-
duce uniformly distributed reads across the target genome. The solution to the
long term repeat problem then consists in analysing read coverage in overlap
graphs and rearrange read assembly in a way that the reads are distributed
as uniformly as possible in the assembly (Kececioglu and Myers (1992)). The
main problem of this method is the assumption of uniform read distribution
of reads itself. A shotgun process is a stochastic method to gain reads from a
genome. As in every stochastic process trying to reach a uniform distribution,
the uniformity cannot be guaranteed throughout each segment of the genome.
Additionally, chemical properties of the DNA itself sometimes inhibit the cor-
rect DNA duplication during the different cloning stages of the shotgun process,
leading to skewed distributions of reads. In summary, assuming a uniform dis-
tribution is a working hypothesis that cannot be relied upon as only attribute.

4.6.3 Locating repeats through error pattern analysis

The assembler developed combines both methods described above together with
information on template insert sizes and a fault pattern analysis algorithm.
Contrary to the methods presented by Huang (1996) and Kececioglu and My-

81

4.6. FINDING UNKNOWN REPEATS Thesis

10 T

3 C

column
discrepancy

massive
10 A

3 C

column
discrepancy

massive

Figure 37: Example for a misassembly due to previously unknown long term
repeats. Dark bases are discrepancies between reads and the actual consensus.
The upper picture shows the initial alignment built by the assembler, the lower
picture shows the same contig after the automatic editor made the corrections it
could answer for. Observe the two heavy discrepancy columns automatic editor
left untouched: the assembler will tag the bases of these columns as Possible
Repeat Marker Bases (PRMB), dismantle the contig and reassemble the reads
contained within.

ers (1992), the approach described within this section is able to handle complex
repeat patterns which have more than two copies of extremely strong similar-
ity. Here again, the use of an automatic editor during the assembly – which
performs edits based on trace evidence only – is a major asset as it permits the
duplication of the approach human finishers use when editing contigs.

A very important factor for any human finisher – when searching for mis-
alignments due to repeats – is the observable circumstance that normally errors
in reads which cause a drop in the alignment quality do not mass at specific col-

82

4.6. FINDING UNKNOWN REPEATS Thesis

Marker Bases
Possible Repeat

conflict free

Marker Bases
Possible Repeat

conflict free

Figure 38: Resolved repeat problem: with the additional knowledge of possible
repeat marker bases, the assembler is able to find the right solution when as-
sembling repeats. The upper picture shows an alignment containing reads from
figure 37 that were previously misassembled but are now at the right place. All
the reads have been edited automatically at least once before they were re-
assembled. Observe that there are still a lot of discrepancies and base calling
uncertainties contained in the reads. The lower picture shows the same align-
ment after automatic editing of the second assembly pass. This demonstrates
that the correctly assembled repeats enabled the automatic editor to correct
more errors and increase the quality of the assembly.

umn positions.15 Repeats causing misalignments however will show up as mas-
sive column discrepancies between bases of different reads that simply cannot
be edited away. The human finisher performs a search for patterns – like those
shown in figure 37 on a symbolic level in an assembly to detect misassemblies.

The method developed is based on symbolic pattern recognition of column dis-
crepancies in alignments to recognise long term repeats and non-marked short
term repeats. For each column in an alignment, the method uses the same algo-
rithms as for computing a consensus quality (presented earlier in section 4.4.5).
But instead of computing a consensus, each column which contains contradict-
15although chemistry together with the sequencing direction of a read might play a minor role

on the type of errors generated, but this has no real impact on the error distribution itself

83

4.7. READ EXTENSION Thesis

ing bases with a group quality surpassing a predefined threshold (e.g. 30, which
translates to an error probability of max. 0.001 for each base) is marked as po-
tentially dangerous. By analysing the frequency of dangerous columns within a
certain window length, the repeat detection algorithm can find and mark those
columns that exceed an expected occurrence frequency.

Once most of the trivial base calling errors have been corrected by the auto-
matic editor, even a single marked discrepancy column can be seen as a hint
for a repeat misalignment if the coverage is high enough and the area has been
built with reads sequenced from both strands of the DNA (see again figure 37).
The bases allowing discrimination of reads belonging to different repeats are
then tagged as Possible Repeat Marker Bases (PRMB) by the assembler. Con-
tigs containing misassemblies are immediately dismantled and reassembled
and during the subsequent reassembly, no discrepancy in alignments impli-
cating these bases will be allowed and hence misassemblies will be prevented.

The reason for dismantling completely the contigs containing repeat induced
errors in the assembly is the unpredictable effect the misaligned reads had on
the alignment process. The most simple assumption could be that the mis-
aligned reads could be inserted at another position of the assembly. However,
in some cases the misaligned reads change the whole assembly layout and con-
tig structure and lead to a totally different assembly. Misassemblies can be
prevented best by the interaction of pathfinder and contig objects that were al-
ready described, the most sensible thing to do is to let these algorithms redo an
assembly using the additional knowledge gained in this step. Figure 38 shows
the example from figure 37 continued in which misassembled repetitive reads
had single base columns marked as Possible Repeat Marker Base and subse-
quently reassembled at a totally different position, leading to a substantially
different (and correct) assembly than the previous attempt.

4.7 Read extension

As the initial assembly used only high quality parts of the reads, further infor-
mation can be extracted from the assembly by examining the end of the reads
that were previously unused because the quality seemed too low. Although the
signal-to-noise in read traces quickly degrades toward the end, the data is not
generally useless. These ’hidden’ parts of the reads can now be uncovered in
two ways: (i) by uncovering parts of the reads that align to the already exist-
ing consensus and (ii) by uncovering hidden stretches of reads at the end of the

84

4.7. READ EXTENSION Thesis

contigs that are not confirmed by a consensus.
Iterative enlargement procedures enable the assembler to redefine step by

step the high confidence region (HCR) of each read by comparing it with sup-
porting sequences from aligned reads. This usage of information in collateral
reads is the assemblers major advantage over a simple base caller which has
only the trace information of one read to call bases. It may also provide that
extra linking leg needed to connect two previously disjunct contigs together.

4.7.1 Intra-contig and extra-contig read extension

Intra-contig extension is used to uncover reads and support areas of low cover-
age within a contig: the hidden sequence is aligned step by step to the existing
consensus while allowing for a very low error in the alignment. This straightfor-
ward process is mainly used as a method to get more data confirmation than is
available using only high quality parts. In most cases, the discrepancies found
between the HCRs forming the existing consensus and the unaligned low con-
fidence region (LCR) will be decided in favour of the HCR. But in some cases,
especially in regions with very low coverage, one or more reads with LCR data
can correct an error in the HCR stretch, e.g. when there is a local drop in the
confidence values and signal quality of bases in the HCR stretch whereas signal
quality and confidence values of the same bases in the LCR stretch seem better.

Extra-contig read extension uncovers LCRs at the ends of contigs and is used
to extend the consensus to the left or to the right of a contig. LCR data present
at the end of probably each read is not necessarily bad quality, but it is treated
as hidden data: a region where the base caller calculated lower quality for the
bases because it depended on the trace data of a single read. However, once
reads have been aligned in their HCR, two or more stretches of lower quality
can be used to uncover each other. The main purpose for this is to enable po-
tential joins between contigs to be made in later steps. An example for this is
given in figure 39.

4.7.2 Extension algorithms

Intra- and extra-contig extension is computed concurrently by analysing the
overlap relationships characterised in the aligned dual sequences (ADS) com-
puted in the earlier phase of the assembly. For every ADS which score ratio
surpasses a defined threshold16 and that aligns in same orientation, the exten-

16working with relatively high score ratios beginning with 80%

85

4.7. READ EXTENSION Thesis

ALUS

ALUS

Intracontig read extension

Extracontig read extension

2
1
3
6

5
4

Figure 39: Example continued from figure 35 on page 73. Joining of contigs
by extending the high confidence regions. Intra-contig read extension increases
the coverage of contigs while extra-contig read extension allows existing contigs
to be joined after a subsequent reassembly. The most striking difference to
figure 34 on page 71 is that the two reads 4 and 5 are now assembled at a very
different position.

sion algorithm tries to re-align the complete sequences including the previously
unused low confidence region present at the end of each read.

Performing the extension operation at this stage of the assembly process in-
corporates the inestimable surplus value that the reads previously assembled
into contigs will have been edited cautiously at least once by the automatic ed-
itor in their actual high confidence regions. The presumably few errors present
in these parts of the read have thus been edited away where the trace signals
and the alignment with other reads showed enough evidence to support the er-
ror hypothesis. Therefore less errors present in a sequence help the alignment
algorithm to build more accurate alignments and thus will increase the score
ratio of aligned dual sequences even with the LCR data included.

A window search is then performed across the new alignment – containing
also the aligned LCR – to compute the optimal extension length of the HCR up
to the point where the called sequence gets too bad to be correctly aligned. The
chances for a long extension are increased because each read is present in many
ADS objects, giving it many occasions to be extended.

There are two important advantages in extending reads using data from pre-
viously computed Smith-Waterman overlaps instead of aligning against the
contig consensus:

1. short reads might be aligned at the wrong place in a contig, for example
due to repeats. Should the LCR reach into non-repetitive sequence, the

86

4.8. ITERATIVE CYCLING Thesis

read could not be extended. Using aligned dual sequence objects however
will most probably ensure a correct overlap partner to be present.

2. reads that could not be inserted previously into contigs are given the
chance to be extended and thus perhaps create an overlap with existing
contigs.

The iterative enlargement procedure enables the assembler to redefine step
by step the HCR of each read by comparing it with supporting sequences from
aligned reads. This use of information in collateral reads is the major advantage
of an assembler over a simple base caller, which has only the trace information
of one read to call bases and estimate their probability.

4.8 Iterative cycling

Thompson et al. (1999b) showed in a large comparative analysis for multiple
protein sequence alignment algorithms that iterative alignment algorithms of-
fer improved alignment accuracy at the expense of computation time. As de-
scribed in the previous sections, the assembler started the assembly process
using sequence data with fairly high confidence and constructed – sometimes
short – contigs of high quality. The quality of the contigs was then improved by
automatic editing and eventual re-assembly in case of misassembled repeats
due to formerly unknown repeats. The high confidence regions of the reads
were then extended into the low confidence regions.

All these steps contribute to increase substantially the quantity and quality
of usable sequence data that can be extracted from experimentally gained reads
as they represent viable methods for removing inconsistencies during the as-
sembly process. The new data can contain information crucial to the assembly,
i.e. information that forces re-ordering of reads within contigs or even break-
ing up whole contigs to re-assemble the reads into new contigs. The single
base-calling errors removed from the reads contribute to refine the pairwise
alignments. This is a substantial advantage over simple iterative realignment
approaches – like the round-robin algorithm from Anson and Myers (1997) or
the method of Barton and Sternberg described in Chan et al. (1992) – that have
to use sequences containing errors to build a correct alignment.

The operations necessary for reassembly and realignment are unpredictable
and depend heavily on the type of genomic data that is to be assembled. To
make the best possible use of the improved sequences, the assembler there-
fore restarts the whole assembly process from the beginning. This ensures an

87

4.9. MODIFICATIONS FOR EST ASSEMBLY Thesis

optimal new assembly without risking errors introduced by unpredictable or
wrongly predicted reordering operations.

The assembler will stop cycling should no major conflict be present in the con-
tigs or should the newly gained information through automatic contig editing
and read extension be minimal.

By cycling through the previous steps, the assembler iteratively corrects er-
rors – like base-calling errors and misassembled repetitive repeats – that were
made during previous steps and thus ensures the resulting contigs contain as
few unexplainable errors as possible.

4.9 Modifications for EST assembly and SNP detection

For allowing the assembly of EST sequences and subsequent detection of SNP
sites, the mira assembler was extended with some specialised algorithms: the
miraEST modification of the standard assembler is specialised on using se-
quences gained by EST clone analysis to reliably detect and classify SNPs oc-
curring in mRNA transcripts according to their SNP bases and strains (respec-
tively cell types). Unlike other existing approaches like TRACE-DIFF (Bonfield
et al. (1998)), polyphred (Nickerson et al. (2000)) or PTA (Paracel (2002c)), the
method that was devised and implemented in the miraEST assembler does not
first assemble all the sequences and then classify the SNPs. It rather uses in-
formation about potential SNP sites gained during the assembly to first cleanly
assemble the transcript sequences by SNPs, strains, cell types and gene splice
variants. Although it must be noted that not all SNPs or splice variants can be
differentiated computationally: sequences with low transcript abundance and
SNPs at sites having a low quality value cannot be differentiated. Also, splice
variants that are a 100% subset of other variants will blend into their superset.
Only in the last pass the resulting mRNA transcripts are assembled in a way
that SNPs can be analysed, classified and reliably assigned to their correspond-
ing mRNA transcriptome sequence.

The following sections describe both the problems and their solutions that
were encountered respectively devised during the implementation and tests of
the specialised EST assembly and SNP detection modules.

4.9.1 Coverage: meeting both extremes

Compared to assembling genome projects, EST projects can be much harder to
assemble and evaluate. Genomes – or portions of it – are normally sequenced

88

4.9. MODIFICATIONS FOR EST ASSEMBLY Thesis

Figure 40: Coverage example in non-normalised EST project. Assembly after
the first pass where all the sequences have been classified by true mRNA tran-
scripts. Gene families and transcripts having SNP sites are in different contigs
already.
The seemingly vertical lines on the left are in fact several hundreds of se-
quences one above the other. One can easily see that a few transcripts were
sequenced extremely often while the majority of the mRNA transcripts has a
low coverage.

a few times over and thus have a more or less comfortable coverage as well as
clone insert sizes values for adjudication of problematic positions. EST projects
on the other hand can have about any possible coverage: either very few reads
or – on the contrary – a lot of reads per transcript. To make things even worse,
some projects combine both: extremely high and extremely low coverage. The
reason for this lies in the two possible ways a clone library is build: 1) in non-
normalised libraries, all mRNA transcripts are collected regardlessly whether
there are already duplicates in the library or not 2) normalised clone libraries,
which use some special techniques to reduce duplicate transcripts.

Knowing that some genes or gene families are expressed more often than
others within a cell, it is clear that working with non-normalised EST libraries
poses the risk that there might be a few hundred or even thousand very sim-
ilar transcript sequences of a gene / gene family within the sequenced project
like, e.g., cytochromes. On the other hand, rarely expressed genes might be
represented just once or even not at all.

The part of the mira assembler that showed to be the most susceptible to
the increased coverage in EST projects was the pathfinder module with the
“width-first-depth-last n, m-recursive look-ahead strategy” described in section

89

4.9. MODIFICATIONS FOR EST ASSEMBLY Thesis

4.4.2. Understandably, a coverage of approximately 6 to 12 in genome projects
with some repeat stretches scattered across the genome does by far not lead
to graphs that are as dense as those build by, e.g., 1000 sequences that are
very similar. The recursive nature of the path traversal algorithm led to dis-
proportionate time and memory requirements. Different strategies were tried
to tackle this problem. In the end, internal testing in the development phase
showed that a time based cutoff-strategy combined with automatic search space
reduction proved to be the most successful in terms of result quality, time and
memory consumption. The time needed to traverse the connection graph is
recorded for each recursion. If it surpasses a certain threshold, only the frac-
tion of the possible targets corresponding to the ratio of time allowed versus
time consumed is kept for the next recursion levels.

This strategy has, of course, a few drawbacks. First, its behaviour becomes
that of a simple greedy algorithm for very large and dense graphs. Second,
reproducibility is not guaranteed across different runs of the algorithm on dif-
ferent platforms or even on the same computer: the faster a computer is and the
less other tasks are running, the more likely it will be that the search algorithm
has enough time to analyse more solutions and not fall back to the quasi-greedy
algorithm.

4.9.2 Detection of SNPs in genes and gene families

As is the case for detecting previously unknown repeats based on differences
in single bases, the detection of SNPs is tightrope walk. Even in 2003, meth-
ods that propose redundancy based detection of SNPs were seen as state of the
art (Barker et al. (2003)). Alas – as was shown in section 4.9.1 – EST projects
tend to have extremely low “coverage” per mRNA transcript of rarely expressed
genes, so this model does certainly not suffice. The algorithms conceived and
implemented for this thesis take things a step further by combining the re-
dundancy based approach with a symbolic pattern analyser and the usage of
descriptive values that can be gained via the automatic editor from the trace
signals (like, e.g., overall quality, possible miscall probability etc.).

The best solution for human experts when doing this work manually is to
search for patterns on a symbolic level in an mRNA transcript assembly to de-
tect potential SNPs. Here again, the important factor is the observable circum-
stance that – normally – discrepancies in reads which cause a drop in the align-
ment quality do not accumulate at specific column positions. Sequences from
different mRNAs, however, may show column discrepancies between bases of

90

4.9. MODIFICATIONS FOR EST ASSEMBLY Thesis

Figure 41: Snapshot of the EST sequence assembly after the first iteration
(visual representation by the means of the gap4 program). All sequences were
assembled together. After the assembly, mira searched for unresolved mis-
matches with good signal qualities, tagging entire columns as ’dangerous’ po-
tential SNP site for the next iteration (shown in bright red).
As there are unresolved problems in this assembly, mira will dismantle that
contig and reassemble the sequences immediately, this time using the informa-
tion gained about the potential SNP sites in the previous assembly to correctly
discern between different mRNA transcripts having different SNP variants.
The black rectangle amidst the sequences depicts the three trace signal extracts
that have been exemplarily shown below. One can clearly see that there will be
at least three different mRNA transcripts to be build, based on the fact of the
double-base mutation in the middle of the box, one reading CC, the next CT and
the last TC.

different reads that simply cannot be edited away: these are the potential SNP
sites. See figure 41 for such a typical real life example.

Adjudicating now whether discrepancies between similar EST sequences are
significant – and thus a polymorphism – or not relies therefore much more on
the underlying traces and their quality than for genome assembly.

Based on this, the symbolic pattern recognition methods developed for recog-
nition of column discrepancies in repeat alignments in section 4.6.3 were ex-
panded to allow detection of SNPs. The algorithms developed base on the same
working principles, i.e., the most important criterion are the group qualities

91

4.9. MODIFICATIONS FOR EST ASSEMBLY Thesis

Figure 42: The last step of the EST assembly: merging the mRNA transcript
sequences gained in the previous steps.
This example is continued from figure 41 and does not contain strain infor-
mation yet. The sequences had been put into 4 different mRNA transcript
sequences, two of them (named default Contig1 and default Contig2) having
multiple experimental sequences, the two others (default Singlet1 and de-
fault Singlet2) consisting only of one sequenced probe.
Interestingly enough, most of the SNPs shown in this example will not cause a
change in the amino acids of the resulting protein, with one notable exception:
the SNP of default singlet4 at base position 662 (solid red circle) causes a TAA
codon to be expressed, which is a stop signal. The SNPs of the same sequence
at position 686 and 707 (dashed red circle) would cause mutations in the amino
acid sequence, but are – because of the TAA mutation earlier – in the 3’ UTR of
the mRNA.

that can be calculated for different bases in a column. Under those circum-
stances, even a discrepancy caused by a single base in a single column of an
alignment can be seen as a hint for a SNP site, i.e., if the base probability
values of the bases in the immediate area are high and the signal traces do
not allow an alternative sequencing error hypothesis. The bases allowing dis-
crimination of reads belonging to different mRNA transcripts will be marked
as possible SNP marker bases (PRMB) in an intermediate first pass by the as-
sembler. Technically speaking, the bases tagged as PRMB in this pass are –
of course – not marker for possible repeats but marker for possible SNPs and
should be named possible SNP marker base (PSMB). However, their function is
exactly the same and handled by exactly the same routines.17

92

4.9. MODIFICATIONS FOR EST ASSEMBLY Thesis

Figure 43: In contrast to figure 42, the input sequences were given strain infor-
mation to show the effect when two different organism strains (named ’sponge1’
and ’sponge2’) are sequenced and analysed. In this example, miraEST classified
the SNPs into two categories: PROS (shown in light blue) for SNPs that occur
only between strains / organisms (e.g. column 661) and PIOS (shown in light
green) for SNPs that occur both within a strain as between different strain (e.g.
column 662).
One can now clearly see, that the mutation causing a stop codon to be expressed
(position 662) is only present in one transcript from ’sponge2’.

4.9.3 Classification of SNPs

Basically, one can differentiate between three distinct types of single nucleotide
polymorphisms (SNP) when analysing transcripts from one or several organ-
isms, strains or cell types.

1. PAOS Polymorphisms that occur within a single organism or cell tran-
scriptome are tagged as ”Possible intrA Organism Snp”

2. PROS Polymorphisms that occur between different organisms or cells are
tagged ”Possible inteR Organism Snp”

3. PIOS Polymorphisms that occur both within and between organisms (re-
spectively cell types) are tagged as ”Possible Intra- and inter Organism
Snp”

During an optional last assembly pass, the miraEST assembler will merge
almost identical – strain and SNP separated – transcriptome sequences from
the previous passes for a last alignment. Such an alignment shows SNP differ-
ences between the mRNA sequence transcripts. The transcript sequences used
for this final assembly stage will be precisely classified and assembled at least
by SNP types and – if the information was present – by organism / strain / cell
17This is one of the more prominent places where it shows that the EST assembler is a sibling of

its genome pendant.

93

4.9. MODIFICATIONS FOR EST ASSEMBLY Thesis

type in the previous passes. Consequently, it is reasonable to assume that the
transcript sequences used at this stage are pristine, that is, they code existing
proteins.

It is important to note that this step, like the whole process performed by
miraEST, is still an assembly and not a clustering step, i.e., sequences com-
posed by different exon structures or which contain large indels will not be
assembled. The results obtained here are nevertheless important in a sense
that they allow analysis and classification of the SNP types of nearly identical
mRNA sequences which occur in one or several sequencing assembly projects.

Figure 43 illustrates the assembly of two strains. SNPs are classified into
all three categories, the example figure showing two of them (PAOS and PIOS).
Sequences without strain information will also have the bases tagged, but only
as PAOS as they will be assigned to a default strain. Comparing figures 42 and
43 exemplarily shows the differences in classification with and without supplied
strain data. Figure 42 shows the assembly of one strain, each SNP is therefore
classified as as PAOS. Figure 43 shows the simulated assembly of two strains.
SNPs can now be classified into all three categories, the example figure shows
two of them (PAOS and PIOS).

Poly-base stretches of As or Ts marking the end of translation are left as
help for visual analysis, but are not used computationally to decide whether a
position contains a SNP or not.

94

5 Results and discussion

“Never trust a tall dwarf. He’s lying about something.” (Solomon
Short)

The principles presented within this thesis have been implemented in the
mira1 assembler. Development of the assembler started in 1997, the 1.2 ver-
sion of mira containing the methods discussed in this thesis was used at the
Institute of Molecular Biotechnology (IMB) Genome Sequencing Centre Jena
(GSCJ) and several other public institutes or private companies after having
passed intensive testing in fall 1999, during which the overall concept has been
refined. Since November 1999, the assembler was subject to constant scrutiny,
performance improvement algorithmic redesign, the current version 2.2.8 was
released in May 2004.

As stated in chapter 1, the aim of this thesis was to reduce assembly errors
caused by repetitive sequences as well as increase the reliability of consensus
sequences derived from automatically assembled projects. During the course
of this thesis, it became apparent that two type of assembly projects could be
taken to evaluate whether the methods and algorithms developed for this thesis
could meet the expectations: i) assembly of highly repetitive eukaryotic genome
sequences and ii) assembly of non-normalised EST projects, which contain per
se a high degree of very similar mRNA sequences.

This chapter presents the results in three sections: the first presents and
discusses qualitative results of the mira assembler for genome assembly, the
second section gives an overview on results achieved for EST assembly and
SNP detection and the third section discusses the results obtained in general.

5.1 Genome assembly

While the data sets used for the evaluation of the genome assembly in 2000
seem quite small for today’s standards (between 30 and 130 kilobases), they

1MIRA: Mimicking Intelligent Read Assembly

95

5.1. GENOME ASSEMBLY Thesis

covered the whole range of problems that arose while performing a shotgun
assembly of purportedly hard to assemble eukaryotic genome sequences.

In cooperation with the Genome Sequencing Center in Jena (IMB Jena),
seven projects from human chromosome 21 were taken for this evaluation. The
small GenBank sequence AF045449 was chosen because it had been a small
though reportedly hard project to finish due to repetitive regions with addi-
tional multiple base inserts. The other projects were randomly chosen from
standard medium sized projects that took longer than average to finish, con-
tain a moderate to high number of repetitive regions and had been submitted
to GenBank at the time of the study (2000).

As Chen and Skiena (2000) noted and Miller (2001); Bray et al. (2003) con-
firmed later, it proves to be a non-trivial problem to compare genomic DNA se-
quences as are results of different assembly programs on a given project. Gen-
eral tools that permit this task are focussed on multiple alignments of protein
sequences2, but are not well suited for comparison and characterisation of dif-
ferences in long DNA sequences. First steps toward this goal were published by
Delcher et al. (2002); Bray et al. (2003) but still need to be improved regarding
the automation of difference analysis reporting.

For this reason, the comparison was done both automatically and manually.
The submitted, human-edited and finished sequence was taken as golden stan-
dard and compared with different assemblies using the cross match program
from Phil Green. Areas in which the consensus sequences showed discrepancies
were submitted to visual inspection of differences between the resulting assem-
blies using the GAP4 program from the Staden package. Relevant results for
the evaluation assembly projects are shown in tables 5 and 6 to demonstrate
the effectiveness of the methods presented.

The mira assembler was compared with two of the most widely used assem-
blers freely available at the time of the survey: the assembler integrated into
the sequence assembly package GAP4 from the Staden group at the MRC LMB
in Cambridge (UK) and the PHRAP assembler developed by Phil Green. Inci-
dentally, these assemblers nowadays (2005) still belong to the most widely used
in sequencing projects around the world.

The data was gained by gel electrophoresis on ABI 377 machines. Each
project ran through an entire assembly cycle with the respective tools consist-
ing of ABI-basecall→ PREGAP4→MIRA/EdIt for the MIRA test, ABI-basecall

2see Notredame (2002) for a review of state-of-the-art algorithms,Thompson et al. (1999a) and
Lassmann and Sonnhammer (2002) for a evaluation of some of these tools and Morgenstern
et al. (2003) for the description of a web-based solution

96

5.1. GENOME ASSEMBLY Thesis

Table 5: Genome projects used for benchmarking. Only the most prevalent
families of repeat types present in the project are given, most of the types also
consist of several subtypes that were summed up, e.g. AF045450 contains in
the Mlt family repeats of type Mlt1A2, Mlt1C, Mlt1E and Mlt1F while the Herv
family is represented by Herv16, Herv17 and HervL.

GenBank
accession
number

Contig
length

Number
of re-
peats

Repeat
fraction of
sequence

Prevalent
repeat
families

Number
of
reads

AF045449 32,613 36 17.9% Alu,L2,Mir,Mlt 832
AF045450 40,205 54 62.6% Alu,Herv,Mlt 941
AF129076 42,051 39 32.2% Alu,L1,Mer,Mlt 2,070
AF015722 47,162 71 15.6% Alu,L1,Mer,The1b 850
AF222685 85,040 179 31.5% Alu,L1,L2,Mir 2,408
AF165178 88,775 422 58.6% Alu,L1,L2,Mlt 3,452
AF130248 137,074 157 35.7% Alu,L1,L2,Mir 3,636

→ PREGAP4 → GAP4/cycle3 for the GAP4/cycle test and PHRED-basecall →
PREGAP4 → PHRAP for the PHRAP test.4 Please refer to the respective user
manuals of the software packages for a detailed description of the default pa-
rameters. Only ALU repeats were tagged during the PREGAP4 process, no
read template information was available. GAP4/cycle and PHRAP assemblies
were run using standard parameter sets from the IMB Jena sequencing centre.
mira was started with default parameters as described in appendix B.

The assemblies were compared by building a standard GAP4 consensus for
contigs longer than 1,500 bases in regions with a coverage ≥3. This ensures
that very low coverage uncertainties and contigs too small to be useful in sub-
sequent contig joining steps are clipped away in this study. The results are
shown in table 6.

In six out of the seven projects, the consensus produced by mira has a lower
error rate (errors per kilobase consensus sequence) than the GAP4/cycle assem-
bly. The mira consensus of five out of the seven projects has a less errors per
kilobase than the PHRAP assembly. It is interesting to note that no multi-
ple adjacent base errors were found in the mira assemblies, while two PHRAP

3GAP4/cycle is a script performing several GAP4 assemblies with decreasing strictness
4PHRAP uses base qualities for the assembly, MIRA/EdIt can use them if present and

GAP4/cycle does not

97

5.1. GENOME ASSEMBLY Thesis

Ta
bl

e
6:

C
om

pa
ri

so
n

of
M

IR
A

/E
di

t,
G

A
P

4/
cy

cl
e

an
d

P
H

R
A

P
as

se
m

bl
ie

s.
P

ro
je

ct
A

ss
em

bl
er

C
on

ti
gs

≥
15

00
ba

se
s

B
as

es
co

v-
er

ag
e
≥

3
G

en
B

an
k

en
tr

y
co

v-
er

ed

N
um

be
r

of
ed

it
s

Si
ng

le
ba

se
er

ro
rs

M
ul

ti
pl

e
ba

se
er

ro
rs

A
cc

ur
ac

y
E

rr
or

s
pe

r
10

kb

M
IR

A
/E

dI
t

3
33

,3
40

95
.3

%
3,

97
9

27
0

99
.9

13
2

8.
68

A
F

04
54

49
G

A
P

4/
cy

cl
e

8
27

,4
96

71
.5

%
-

27
0

99
.8

84
2

11
.5

8
P

H
R

A
P

2
34

,5
38

98
.9

%
-

32
3*

15
99

.7
61

4
23

.8
6

M
IR

A
/E

dI
t

2
40

,1
14

96
.9

%
7,

58
8

16
0

99
.9

58
9

4.
10

A
F

04
54

50
G

A
P

4/
cy

cl
e

11
37

,4
58

79
.4

%
-

9
0

99
.9

71
8

2.
82

P
H

R
A

P
2

40
,1

91
99

.9
%

-
54

1*
4

99
.8

55
7

14
.4

3

M
IR

A
/E

dI
t

4
43

,6
81

94
.1

%
12

,0
81

6
0

99
.9

84
8

1.
52

A
F

12
90

76
G

A
P

4/
cy

cl
e

15
44

,0
85

69
.7

%
-

7
0

99
.9

76
1

2.
39

P
H

R
A

P
6

45
,4

27
97

.1
%

-
7

0
99

.8
28

6
1.

71

M
IR

A
/E

dI
t

6
44

,5
16

89
.5

%
7,

45
5

29
0

99
.9

29
0

6.
87

A
F

01
57

22
G

A
P

4/
cy

cl
e

15
36

,5
62

59
.4

%
-

29
0

99
.5

39
4

10
.3

5
P

H
R

A
P

1
47

,7
44

99
.9

%
-

34
0

99
.9

27
8

7.
22

M
IR

A
/E

dI
t

7
84

,2
30

89
.9

%
23

,4
99

26
0

99
.9

66
0

3.
40

A
F

22
26

85
G

A
P

4/
cy

cl
e

28
58

,8
96

52
.2

%
-

25
1*

2
99

.9
43

6
5.

86
P

H
R

A
P

3
85

,7
44

99
.2

%
-

5
0

99
.9

94
1

0.
59

M
IR

A
/E

dI
t

10
89

,9
71

90
.8

%
40

,4
51

19
5

0
99

.7
58

1
24

.1
9

A
F

16
51

78
G

A
P

4/
cy

cl
e

26
58

,8
74

48
.9

%
-

14
5

1*
4+

1*
2

99
.9

96
5

34
.7

9
P

H
R

A
P

10
82

,3
57

92
.8

%
-

10
4

0
99

.8
73

7
12

.6
0

M
IR

A
/E

dI
t

9
13

0.
24

6
94

.5
%

14
,9

37
12

0
99

.9
90

8
0.

86
A

F
13

02
48

G
A

P
4/

cy
cl

e
28

10
8,

10
2

68
.4

%
-

18
0

99
.9

80
8

1.
92

P
H

R
A

P
6

13
7,

80
3

>
99

.9
%

-
17

0
99

.9
87

6
1.

24

98

5.2. EST ASSEMBLY Thesis

projects (AF045449 and AF045450) and two GAP4/cycle project (AF222685 and
AF165178) were affected from this. In the case of the PHRAP AF045449 it
decreases dramatically the quality of the assembly. Visual inspection of the
15 base error stretches in AF045449 showed that different subtypes of repeats
with 86% homology had been mixed and wrongly assembled with other similar
repeats during assembly by PHRAP, an error that mira did not make at all.

In general, mira built less contigs than GAP4/cycle and slightly more contigs
than PHRAP. mira projects have significantly more bases of the final project
covered than GAP4/cycle, but a slightly less total coverage than PHRAP in the
corresponding GenBank entries. On the other hand, the total number of errors
present in the consensus is significantly lower most of the time with the mira
assemblies than with the PHRAP assemblies. In fact, only two of the seven
mira projects (AF222685 and AF165178) contain more single base errors in the
coverage consensus than the corresponding PHRAP projects and mira never
made multiple base errors – resulting from misassembled sequences in repeat
stretches – whereas PHRAP and GAP4/cycle did.

These results are confirmed by several private communications with different
sequencing groups showing that mira delivers correct assemblies with signifi-
cantly less contigs and more coverage than the standard GAP4/cycle assembly.
Compared to PHRAP, the number of contigs is higher and the GenBank entry
coverage slightly lower. However, human finisher frequently report that routine
use of PHRAP is often complicated by misassemblies, especially in the case of
low redundancy sequencing (skimming, working draft), or high in case of high
degrees of similarities (≤ 1%) between different repeats. This shows that the
strategy developed in this thesis to assemble high confidence regions first – and
strict checking of repetitive DNA stretches known as problematic with routines
for signal analysis – avoids mistakes in the assembly, while preparing good con-
tigs for possible manual or automatic join operations that are to be performed
later.

5.2 EST assembly

In comparison to an assembly of a genomic sequence, the assembly of an EST
project has two notable differences: i) mRNA of genes is quite short, one kilo-
base is already considered long and two kilobases are rarely reached (and the
contigs built will not exceed this length) and ii) the degree of similarity will be
extremely high for some gene families like, e.g., cytochromes. The challenge

99

5.2. EST ASSEMBLY Thesis

Table 7: Summary of results from EST assembly of sponge, dog and grapevine
sequences.
Step 1: result sequences are transcripts separated by SNPs, but not by strain.
The number of contigs, the classification numbers on maximum and minimum
coverage (and the times they occurred) within the contigs as well as the number
of singlets give a rough idea about the asymmetrical distributions of EST reads
in the different contigs.
Step 3: ’assembly of pristine mRNA transcripts’ to analyse SNP sites and types.
The transcripts sequences gained there can be seen as a consensus of the (hope-
fully) pristine transcripts gained in the previous steps of the assembly. Classi-
fication of SNPs (see also the subsection of the same name in section Methods
and Algorithms) is also performed in this step: ’Intra’ means that SNPs occur
only with a strain or cell type, SNPs of type ’Inter’ occur only when comparing
different strains or cell types, and the ’Intra and Inter’ SNP type is a combina-
tion of the first two types.
Intermediary results from step 2 are not shown as sponge and dog do not use
this step and the grapevine results are too extensive.

Sponge Dog Grapevine

Input sequences 9,747 10,863 32,776
Strains / cell types 1 1 10

Step 1 : transcript SNP separation assembly

Total transcripts 4,401 5,921 12,380
thereof singlets 3,151 4,204 7,904
thereof contigs 1,250 1,717 4,476
Max cov / occured 145 / 1 106 / 1 812 / 1
Min cov / occurred 2 / 637 2 / 885 2 / 2,143

Total transcript len. 3,342,596 3,941,124 7,082,719

Step 3: transcript SNP classification assembly

Total unified transcr. 4,077 5,901 8,547
thereof singlets 3,780 5,811 6,131
thereof contigs 297 90 2,416

thereof with SNPs 285 81 2,103
Total transcript len. 3,120,847 3,897,635 4,872,333

Transcript SNP types
Intra strain / cell 2,158 461 959
Inter strain / cell – – 1,505
Intra and Inter s. / c. – – 7,221

Total SNP sites 4,653 927 9,685

100

5.2. EST ASSEMBLY Thesis

for an assembler is to correctly recognise splice variants of the same gene, but
also to discern between the mRNA generated by different gene copies or by dif-
ferent allelic variations that sometimes have as only difference a single base
polymorphism (SNP).

Three very different projects were taken to present results reached through
an accurate assembly and subsequent SNP scanning of transcript sequences
with the miraEST assembler. The non-normalised libraries contain ESTs se-
quenced from the plant Vitis vinifera Linnaeus (Plantae: Spermatophyta: Ro-
sopsida / Dicotyledoneae), and two animal taxa, the sponge Suberites domun-
cula Olivi (Metazoa: Porifera: Demospongiae), and the vertebrate Canis lupus
familiaris Linnaeus (Metazoa: Chordata: Vertebrata).

Although these three multicellular organisms are eukaryotes, they are only
distantly related. In general, plants split off first from the common ancestor,
approximately 1,000 million years ago (MYA). Later the Metazoa evolved, (700
MYA with Porifera as the oldest still extant phylum, and finally the Chordata
appeared (500 MYA, reviewed in: Kumar and Rzhetsky (1996); Müller (2001)).
Until recently, the Porifera were an enigmatic taxon, see Müller (2001). Only
the analyses of the molecular sequences from sponges, both cDNA and genomic
ones, gave strong evidence that all metazoan phyla originated from one ances-
tor. Therefore, ESTs from this taxon were included into this evaluation in order
to obtain a first estimation about the abundance of particular genes in such a
collection.

The assembled ESTs from the S. domuncula (sponge) were taken to allow a
further elucidation of the evolutionary novelties that emerged during the tran-
sition from the fungi to the Metazoa. Likewise the data from the V. vinifera
(grapevine) and the mammal C. lupus familiaris (dog) should provide an under-
standing of the change of gene pool in organisms under domestication. While
the dog and sponge project had only ESTs sequenced from one strain (respec-
tively cell type), the grapevine project had ESTs that were collected from a
multitude of cell types, ranging from root cells to berry cells. Table 7 shows an
overview of these projects together with some of the more interesting statistics
of the assembly.

Depending on the projects, the sequences used were obtained by capillary
electrophoresis on ABI 3100 or ABI 3700 machines with each project having
specific sequencing vectors. For this study, all project sequences were prepro-
cessed and cleaned using standard computational methods: TraceTuner 2.0.15

5TraceTuner is from from Paracel Inc.

101

5.2. EST ASSEMBLY Thesis

for extracting the bases. Datasets were cleaned by using PFP as described in
Paracel (2002a): masking of known sequencing vectors, filtering against con-
taminant vectors present in the UniVec core database, filtering of possible E.
coli and other bacterial contamination and masking of poly-A / poly-T tails in
sequences. Repeats and known standard motifs were not masked as these are
integral parts of the data and contain valuable information. Sequences that
were shorter than 80 bases were removed from the projects. The remaining
sequences used in the three projects total 53,386 sequences with 54,303,071
bases.

For each project, the miraEST assembler’s integrated standard parameter set
was used. This set is configured as a three pass assembly :

1. classification of the sequences by SNP type using all sequences from all
strains / cell types etc. The motivation for performing a first pass that
separates only by SNP and not also directly by strain / cell type is the
simple observation that the assembler still can find useful SNP on rarely
expressed genes when looking at the entirety of the available data within
alignments. Interesting sequence features found in this first pass are
valuable for the two subsequent passes in which the algorithms will ben-
efit from them.

2. additional step if strain information is available: separation of the se-
quences by strain (resp. cell type) and SNP. This results in clean mRNA
transcripts sequences that represent the actual state of the transcriptome
of a strain / cell type as it is present in the clone library. Although the
results of this step are interesting on their own, their major importance is
the fact that they are used as pristine input for the following third pass.

3. production of a combined SNP-strain assembly. If strain information was
available, this step uses results from step 2, else from step 1. The result of
this assembly has the exact SNP positions and types tagged in the mRNA
transcript sequences that form an alignment of the resulting consensus.

Each pass had a standard set of options activated to enhance the prepro-
cessed reads by trimming for quality, unifying areas of masked bases at read-
ends, clipping sequencing vector relicts and tagging remaining poly-A / poly-T
stretches in sequences (see section 4.1 and appendix B for more details). Trace
data was used in the assembly to edit base calling errors in sequences and as-
sess bases and possible SNP sites when available. Table 8 shows computer
requirements in conjunction with project complexity aspects.

102

5.2. EST ASSEMBLY Thesis

Table 8: Runtime and memory consumption of the study projects using an Intel
2.4 GHz Xeon P4/HT PC with 512 K L2 cache and 2 G RDRAM. Comparison of
the sponge and dog project, which have roughly the same number of sequences
showing a clear relationship between the runtime and the number of detected
contig reassemblies (which were triggered by newly detected SNP sites).
The reduced runtime from step 1 to step 2 is due to potentially problematic
regions with SNP sites that were detected in the first step. These SNPs give
additional information to the second step, which then prevents misassemblies
that involve those sites. Hence the lower number of reassemblies reduced run-
time.
In general, step 3 has less transcript sequences to assemble than step 1 and
step 2, also leading to reduced runtimes.

Sponge Dog Grapevine

Peak memory usage 250 M 280 M 1.7 G

Runtime in minutes

Step 1 27 14 735
Step 2 20 10 101
Step 3 3 4 35

Total 137 69 871

Number of contig reassemblies

Step 1 577 250 3,827
Step 2 51 18 1,927
Step 3 0 0 0

Total reassemblies 628 268 5,754

Comparing the projects led to some interesting insights both on the behaviour
of miraEST and on the data itself. Although the sponge and the dog projects
have about the same numbers of sequences used as input (9,747 versus 10,863),
the assembly runtimes of the sponge project took about twice as long to com-
plete than the dog project. When analysing log files and intermediary results
from both projects, two main causes were found for this behaviour:

1. the more assembled transcript contigs contains SNPs, the more the as-
sembler will have to break those up and reassemble them in step 1 and 2,
leading to higher assembly times.

103

5.2. EST ASSEMBLY Thesis

2. the more similar sequences from one or several gene families are present,
the higher is the probability for an increased number of iterations needed
to get the transcripts assembled cleanly.

Both these factors can be seen as predominant indicators for the complexity of
a project. The sequences of the sponge project contain 285 mRNA transcript
contigs (7.0% of the transcripts) with SNPs. These total 2,158 SNP sites, which
is about 7.5 SNPs per mRNA transcript that contains SNPs. The sequences
of the dog project however lead to only 81 mRNA transcript contigs (1.4% of
the transcripts) with SNPs. These total only 461 SNP sites, which is about
5.7 SNPs per mRNA transcript that contains SNPs. The sequenced sponge
EST sequences therefore not only contain more transcripts with polymorphisms
than the dog sequences, they generally also contain more SNPs per transcript.

Comparing the grapevine project with the two other projects also yielded
some interesting discoveries. First, the contig with the maximum coverage that
occurred in step 1 contained 812 reads compared to 145 for the sponge and 106
for the dog. The grapevine data also contained several additional of these high-
coverage contigs, which meant that the this project contained a number of genes
or gene families that were, in absolute numbers, more expressed – and thus se-
quenced – than in the dog and sponge project. The second interesting discovery
was the decrease in total transcripts from step 1 to step 3: the sponge project
had a 7.4% reduction (from 4,401 clean transcripts to 4,077 unified transcript
consensi) and the dog only 0.3% (from 5,921 to 5,901), but the grapevine project
had a 31% reduction (from 12,380 down to 8,547) in the number of transcripts.
This meant that many gene transcripts of the grapevine project differed only
in a few SNP bases and were assembled together in step 3, forming transcript
consensi which allowed the classification of SNPs whether they occur within a
cell type, between different cell types or both. On the other hand, the 9,685
SNPs found were dispersed over 2,103 transcripts, which is about 4.6 SNPs per
transcript containing SNPs and therefore less that the sponge or even the dog
project.

The exact reason for these high transcript redundancy numbers in this project
is currently under investigation, but preliminary results indicated that a sig-
nificant number of almost identical common basic housekeeping genes are ex-
pressed and were sequenced in different cell types and that several of them
contain SNPs. For example, a transcript family was found in 9 out of 10 cell
types that was formed by 147 Metallothionein transcripts with no less than 98
positively identified SNP sites over a length of 650 bases. The SNPs are in the

104

5.3. DISCUSSION Thesis

coding region and the 3’ UTR, with many of the SNPs leading to a mutation in
the amino acid sequence of the protein.

5.3 Discussion

Very early in the development process it was discovered that using high quality
sequence data first in the assembly process was a very viable way to proceed as
it substantially reduced computing time. This permitted to reinvest this saved
time into other algorithms that increased the actual quality of the final results:
resolving detected misassembly conflicts, analysis and detection of previously
unknown relevant sequence features (e.g. repeat marker bases, SNPs, etc.) and
detection and elimination of conflicts caused by misassemblies. The ever in-
creasing computing power permitted the design of exact iterative algorithms
instead on relying on makeshift algorithms when assembly problems occurred.
That is, it was a clear choice not to trade off quality for speed when the loss in
quality was deemed to be substantial. Furthermore, integrating an automated
trace editor into the assembly process was the correct choice as results showed
that spurious base-calling errors are reliably detected and removed in an align-
ment and the assembler can also use the trace analysis routines to perform
in-depth and multi-level analysis on problematic regions in alignments.

Presently no other assembly system – be it for genomic or transcript data –
contains a comparable mix of algorithms that enables the assembler to depend-
ably detect by itself and use the information about special base positions that
differentiate between repetitive stretches within sequences as is the case for
repeat marker bases (RMB) in genomic assemblies or single nucleotide poly-
morphisms (SNPs) bases in EST assemblies. Reiterating the stance regarding
the importance of discovering such base positions during the assembly: they
allow the assembler to perform a reliable separation of almost identical se-
quences – which may ultimately differ only in one single position within two
single sequences – into their true original genomic sequence or transcriptome.
This is significantly more sensitive and specific than other methods like relying
on base qualities alone (PHRAP) or the one presented by Tammi et al. (2002),
which needs at least two differences in reads to distinguish them from sequenc-
ing errors.

Additionally, corrections performed by the integrated automatic editor re-
solve errors in alignments produced by base-calling problems. This makes
RMB or SNP detection much less vulnerable to sequence specific electrophore-

105

5.3. DISCUSSION Thesis

sis glitches and base-calling errors as is the case for, e.g., the AG-problem known
with the ABI 373 and 377 machines where a G preceeded by an A is often un-
incisive or only weakly pronounced.

The miraEST assembler was developed concurrently to the mira version for
genome sequences presented in Chevreux et al. (1999, 2000), which enabled
to use basic algorithms for both branches of the assembly system. This also
allowed to concentrate on developing and improving those algorithms that are
specifically needed to tackle the slightly different assembly problems of genome
and EST sequences once the basic facilities were in place.

In contrast to other assemblers or SNP detection programs – like phrap,
gap4, pga/pta, the TGICL system, polyphred or autoSNP – the approach
devised uses strict separation of sequences according to the real signals in the
trace chromatograms. As the results presented in this chapter have shown,
this is a reliable way to ensure that the consensus sequences produced as result
correspond to the real genome or transcriptome sequence.

This method permits to use these results directly for the design of further in-
vestigative studies with high quality and precision requirements like, e.g. the
design of oligo probes for specific SNP detection in clinical micro-array hybridi-
sation screening experiments.

The possibility to export the assembled projects together with the analysis of
RMB or SNP sites to a variety of standard formats, e.g. gap4 directed assembly,
phrap .ace, or even simple HTML pages as shown in figure 44 opens the door to
visual inspection of the results as well as integrating the tool into more complex
and semi-automated to automated laboratory workflows.

106

5.3. DISCUSSION Thesis

Figure 44: Sample of an assembly HTML output

107

6 Conclusion and outlook

“There is no such thing as absolute truth. That is absolutely true.”
(Solomon Short)

A new strategy for assembling genomic shotgun and EST sequence data was
developed and worked out in this thesis. It combines novel enhancements like
repeat detection and on-the-fly automatic editing with strengths of existing as-
semblers. The strategy also provides the assembler with the ability to use and
– more importantly – to acquire by itself additional knowledge present in the
assembly data. Furthermore, the knowledge acquisition was combined with
the ability to resolve potential conflicts – like long term repeats in genome se-
quencing projects or different mRNA transcripts in EST projects – during the
assembly by falling back to trace signal analysis routines.

Especially the possibility to discriminate alternative solutions – due to pre-
viously unknown short and long term repeats – during the assembly process
constitutes a systematic improvement in quality of assembly algorithms that
produce sequences as accurate as possible.

The main aim set for this thesis was to reduce assembly errors caused by
repetitive sequences as well as to increase the reliability of consensus sequences
derived from automatically assembled projects. The results presented in chap-
ter 5 demonstrate that the combination of the methods and algorithms devised
for this thesis leads to a system that achieves this task. It reliably accomplishes
the given task of reconstructing genomic or transcriptomic sequences from DNA
or RNA fragments. This is done through the detection, analysis and classifica-
tion of repetitive elements or single nucleotide polymorphisms which in turn
prevents grave misassemblies that occur in other systems.

In most analysed assembly comparisons, the quality of the resulting consen-
sus sequences was improved and the number of errors per kilobase consensus
sequence was decreased. The improved strategy described here therefore per-
mits to use resulting sequences almost directly for the design of further inves-
tigative studies with high quality and precision requirements like, e.g., the de-
sign of oligo probes in clinical micro-array hybridisation screening experiments.

108

Thesis

Laboratories using the mira assembler routinely report that the most impor-
tant benefit of using mira lies in the fact that – compared to other assemblers
– the resulting assembly contains no or very few misassembled reads, which
almost eliminates the tedious labour of examining contigs for this kind of er-
ror. Instead, simple template direction analysis at the end of contigs suffices to
reorder contigs into the probable order as found on the original genome. The
capability to recognise and tag previously unknown long term repeats for re-
assembly has proven to be a valuable asset in the assembly of projects with
non-trivial repeats. The possibility to export the assembled genome and EST
projects – together with the analysis of possible repeat or SNP sites – to a vari-
ety of standard formats, e.g. GAP4 directed assembly, flat text files, phrap ACE
or even simple HTML format, opens the door to visual inspection of the results
as well as the integration of the tool into more complex and (semi-) automated
laboratory workflows.

No project is really perfect and this one is no exception. Usage of mira and
miraEST assembler on a daily basis in production environments shows that
some algorithms still need a form of fine tuning. In the future, the primary
focus will shift to enable parallel execution in portions of the algorithms to take
advantage of multiple processor architectures. Until now, the program uses
only one processor on a given machine and this clearly represents a bottleneck
when several hundreds of thousands or even millions of sequences are to be as-
sembled. Fortunately, most of the methods presented can be parallelised using
a divide-and-conquer strategy so that distributing the workload across differ-
ent threads, processes and even machines is one of the targets currently pur-
sued. Another point looked into is that usage of the C++ standard template li-
brary (STL) currently leads to unexpectedly high memory consumption in some
parts of the algorithms. This was traced back to memory pooling strategies of
the STL. First experiments with a combination of adapted algorithms together
with better behaviour prediction (data not shown) led to a significant reduction
of these side-effects.

109

A Development details

“Design flaws travel in herds.” (Solomon Short)

In this section, some insights and numbers are given on how implementa-
tional choices were made and the reasons behind them.

A.1 Programming environment

Finding the right approach to resolve the potential conflict between design and
programming is one of the hardest tasks to tackle. Several questions need to be
addressed when developing algorithms for a sequence assembler:

– execution speed

– memory requirements

– reliability

– portability

– implementation ease

In fact, even nowadays no existing combination of language and compiler pro-
vides an optimum coverage of the points mentioned above, they all have positive
and negative aspects. The final decision to choose C++ as implementation lan-
guage was in taken in 1997 because it offers a reasonable mix of the stipulated
requirements.

The common base of C and C++ compilers and its backing as a high profile
language led very early to good optimising capabilities1 as well as reliable code
with very few errors of existing compilers. The possibility to fall back to plain C

1It is widely known that the speed of a program depends mainly on the quality of the algorithms
it bases on. However, good compilers can squeeze a considerable amount of execution speed
from optimal algorithms by optimising them on machine level, sometimes to a factor of 3 and
more.

110

A.1. PROGRAMMING ENVIRONMENT Thesis

if needed was also positive aspect although – in the end – this feature was not
required.

Portability proved to be somewhat harder to attain. The C++ specifications
were finalised and adopted November 14, 1997 by the ISO (International Or-
ganisation for Standardisation) as well as several national standards organi-
sations such as ANSI (The American National Standards Institute), BSI (The
British Standards Institute), DIN (The German National Standards Organisa-
tion) and others. That is well 6 months after the beginning of the project when
the first algorithms had to be implemented for feasibility studies. Fortunately,
the SGI MIPS compiler and the open source EGCS2 were stable enough to sup-
port the language decision for C++. The EGCS compiler had the undeniable
advantage to be available on a multiplicity of different platforms so that porta-
bility could be ensured, but tests showed that the SGI compiler undeniably
produced code at least twice as fast as the EGCS for the then primary devel-
opment platform, a SGI Origin 2000 with R10000 processors. This resulted in
some makeshifts within the code as the SGI cc C++ compiler did not, e.g., sup-
port standard C++ string classes even in 1999, but then again, neither did the
EGCS. Fortunately, keeping the code compatible to both compilers was not too
hard, but portability to other platforms still was not easy: the first compilation
on HP machines in 1999 revealed errors in the HP STL implementation that
were hard to come by.

Speaking of bugs . . . one of the nastiest to encounter is a compiler bug that
appears 1) only on specific platform architectures (e.g. SUN) and 2) only when
the compiler produces optimised code and 3) is only triggered on rare cases
where unexpected results are caught by internal error checking mechanisms
which then throw an error ... and in the course of it trigger the bug. When, after
quite some investigation, it turns out to be an optimising bug of the compiler
used (and not the code one wrote), both relief and anger battle each other. In
the end, relief won.

In the beginning the build environment consisted of some simple, hand-coded
makefiles that grew larger and larger over time while snatching tricks from
makefiles from other authors. But in the end, all these were replaced by the
GNU autoconf and GNU automake systems for somewhat easier cross-plat-
form portability. Which does not mean that the learning curve for these tools
was not steep ... quite the contrary is true when it comes to get the build en-

2which later on was promoted as official GCC until the new GCC 3 compiler lineage appeared
by mid of 2001

111

A.2. PROGRAMMING APPROACHES Thesis

vironment running on different platforms, but it all paid off in the end as the
package now builds out of the box on quite a number of different UNIX plat-
forms.

Having virtually never worked with file versioning before and having gone
through some obligatory code losses while typing silly things like “rm * .o”3,
using RCS almost from the very beginning felt like a big step forward in the
right direction. But when Thomas Pfisterer joined me at the DKFZ to write
his automated editor, we started also to develop some libraries needed by both
the assembler and the automated editor. It took some time before the pain of
dealing with file locks under RCS became so great that a switch to CVS was
envisioned . . . and finally made.

Last but not least, even the most careful programming approaches (see the
next section) could not prevent some hard to find programming bugs to sneak
into the code. As one day, after a week of endless debugging sessions by Thomas
and myself, one particularly nasty specimen was identified to be a “simple”
pointer arithmetic problem, we caved in and started to use “debugging tools
for the sissies”: purify and, later on, valgrind. Those tools have a run-
time checking mechanisms for almost every problem that can occur in typical
C/C++ programs, ranging from stack errors to buffer overflows to uninitialised
memory access. We always thought that we had been careful enough while pro-
gramming and were a bit shocked by the number of potential problems that
were uncovered the first time we ran our program with this tool. Needless to
say that since then, regularly using these tools belongs to standard operational
procedure. This has – together with using ready made algorithm libraries like
the STL, see next section – improved stability of the algorithms developed by
an order of magnitude.

A.2 Programming approaches

Obviously, object oriented programming languages offer a wide variety of pow-
erful techniques to support design and programming. The key is always to find
designs that fit the problems and use the language constructs that best repre-
sent the designs in the code.

The mira assembler was implemented using a lot of simple data abstraction
– i.e. classes without inheritance – as trying to force everything into a hierar-

3mind the blank between the asterisk and .o

112

A.3. CODE STATISTICS Thesis

chy4 mostly results in some truly contorted program logic. Simplicity helped
to keep the design (relatively) clean, modularise the development process and
support the top-down bottom-up engineering model. Generic programming –
templates and algorithms parameterised on types – was also used to get effi-
ciency and type safety for containers: the Standard Template Library (STL) as
nucleus of the C++ standard library provides facilities such as vectors, maps,
and algorithms that work on these containers.

This might seem to contradict the statement on simplicity that was made
above, but it really is not. The key is always to come up with a design that
fits the problems and also using language constructs that best represent the
designs in the code. The possibility to use pre-made algorithms and storage
containers that have been validated for years on a wide number of platforms
considerably sped up development cycles and improved the stability the algo-
rithms. This also helped to focus design and programming on the immediate
assembly problems to be solved, which was complicated enough the way it was,
thank you.

A.3 Code statistics

mira and associated small helper programs currently have approximately 60
header and code files. The mira library, which contains about 95% of the logic,
consists of 24 C++ classes with > 25 thousand lines of code. This number is
down from approximately > 30 thousand lines of code that were reached during
development, mainly due to increased usage of the STL while rewriting large
parts of the libraries since mid of 2003. The automatic editor EdIt library from
Thomas ended up to have 21 files, 18 classes and > 7 thousand lines of code.

4especially into a single-rooted hierarchy

113

B Manual pages

“The manual only makes sense after you learn the program.” (Solomon
Short)

The manual pages describe the options available for the mira assembler at
the time of generation of this thesis and is directly taken from the automated
documentation builder for man-pages of the program. The builder is better
suited for man- and info pages than for LATEX– the conversion routines have
some minor blemishes (see B.1 Synopsis for example) – but the result is never-
theless readable.

B.1 Synopsis

mira [-GENERAL:arguments] [-ESTGENERAL:arguments]
[-ASSEMBLY:arguments] [-DATAPROCESSING:arguments]
[-CLIPPING:arguments] [-ALIGN:arguments] [-CONTIG:arguments]
[-EDIT:arguments] [-DIRECTORY:arguments] [-FILE:arguments]
[-OUTPUT:arguments] [-params=<filename>] [-project=<name>]
[-fasta[=<filename>]] [-caf[=<filename>]] [-phd[=<filename>]] [-borg]

B.2 Description

mira is a DNA sequence data assembly program (pr “fragment assembler”) for
whole genome and EST projects. mira assembles reads / sequences gained by
gel or capillary electrophoresis experiments into contiguous sequences (con-
tigs). Input can be in various formats like Staden experiment (EXP), Sanger
CAF, FASTA or PHD file.

If present, base qualities in phred(1) style and SCF signal electrophoresis
trace files are used to adjudicate between or even correct contradictory stretches
of bases in reads by either the integrated automatic EdIt editor (written by
Thomas Pfisterer) or the assembler itself.

114

B.2. DESCRIPTION Thesis

mira was conceived especially with the problem of repeats in genomic data
and SNPs in EST data in mind. Considerable effort was made to develop a
number of strategies – ranging from standard clone-pair size restrictions to
discovery and marking of base positions discriminating the different repeats /
SNPs – to ensure that repetitive elements are correctly resolved and that mis-
assemblies do not occur.

The resulting assembly can be written in different standard formats like CAF,
Staden GAP4 directed assembly, ACE, HTML, FASTA or simple text, which can
easily be imported into numerous finishing tools.

The aim of mira is to build the best possible assembly by

1. having a full overview on the whole project at any time of the assembly,
i.e. knowledge of all possible read-pairs in a project,

2. using high confidence regions (HCRs) of several aligned read-pairs to start
contig building at a good anchor point of a contig, extending clipped re-
gions of reads on a ’can justify ’ basis.

3. using all available data present at the time of assembly, i.e., instead of
relying on sequence and base confidence values only, the assembler will
profit from trace files containing electrophoresis signals, tags marking
possible special attributes of DNA, information on specific insert sizes of
read-pairs etc.

4. having intelligent contig objects accept or refuse reads based on the rate
of unexplainable errors introduced into the consensus

5. discovering and analysing of possible repeats differentiated only by single
nuceotide polymorphisms. The important bases for discriminating differ-
ent repetitive elements are tagged.

6. using the possibility given by the integrated automatic editor to correct er-
rors present in contigs (and subsequently) reads by generating and verify-
ing complex error hypotheses through analysis of trace signals in several
reads covering the same area of a consensus,

7. iteratively extending reads (and subsequently) contigs based on
a) additional information gained by overlapping read pairs in contigs and
b) corrections made by the automated editor.

mira – written by Bastien Chevreux – is part of a bigger project which also
contains the automated editor / finisher EdIt package – written by Thomas
Pfisterer. The strength of mira and EdIt is the automatic interaction of both

115

B.3. WORKING MODES Thesis

packages which produces assemblies with less work for human finishers to be
done. This is the documentation belonging to the (public) release of the mira
assembler.

MIRA2 has been rewritten in large parts. Compared to the previous versions,
it got more accurate, has better support for standard cases, learned to assemble
EST sequences and is faster ... much faster. I’d like to thank everybody who
reported bugs to me, pointed out problems, sent ideas and suggestions they en-
countered while using the predecessors. Please continue to do so, the feedback
made this second version possible.

B.3 Working modes

mira has two basic working modes: genome or EST. There is a different exe-
cutable for each mode: mira(1) for assembly of genomic data and miraEST(1)
for assembly of EST data and SNP detection within this assembly.

B.4 Options

Options can be given on the command line or via parameter files. While the
format might look a little bit strange, it is borrowed from the SGI C compiler
options and allows both compact command lines as well as readable and / or
script generated parameter files.

The mira(1) command line options accept several arguments and allow a user
to specify a setting for each argument. To specify multiple arguments, use
colons to separate each argument on the command line. You may either use
the long or the short form of each argument, the later being given in brackets.

A typical call of mira(1) with the command line could look like this (all in one
line):

mira -ALIGN:min_relative_score=70

-CONTIG:use_template_information=yes

:insertsize_minimum=500

:insertsize_maximum=2500

or in short form

mira -AL:mrs=70 -CO:uti=yes:ismin=500:ismax=2500

116

B.4. OPTIONS Thesis

Please note that it is also perfectly legal to write

mira -CO:uti=yes -AL:mrs=70 -CO:ismin=500 -CO:ismax=2500

(just for those of you who want to use mira in scripted environments and / or
write scripts for it).

There are example parameter file included in the distribution which shows
how to format parameters in files.

B.4.1 -GENERAL (-GE)

General options control the type of assembly to be performed and other switches
not belonging anywhere else.

project(pro)=string Default is mira. Defines the project name for this assem-
bly. The project name automatically influences the name of input and
output files / directories. E.g. in the default setting, the file names for
the output of the assembly in FASTA format would be ”mira out.fasta”
and ”mira out.fasta.qual”. Setting the project name to ”MyProject” would
generate ”MyProject out.fasta” and ”MyProject out.fasta.qual”. See also
-FILE: and -DIRECTORY: for a list of names that are influenced.

load job(lj)=fofnexp, fasta, caf, phd, fofnphd Default is fofnexp. Defines
whether to load and assemble EXP files from a file of filenames
(”mira in.fofn”), load and assemble FASTA sequences (”mira in.fasta”)
and their qualities (”mira in.fasta.qual”), load and assemble sequences or
qualities from a phd file (”mira in.phd”) or to load a project from a CAF file
(”mira in.caf”) and assemble or eventually reassemble it. Note: fofnphd
currently not available.

filecheck only(fo)=on|yes|1, off|no|0 Default is no. If set to yes, the project
will not be assembled and no assembly output files will be produced. In-
stead, the project files will only be loaded. This switch is usefull for check-
ing consistency of input files.

merge xmltraceinfo(mxti)=on|yes|1, off|no|0 Default is no. Some file formats
above (FASTA, PHD or even CAF and EXP) possibly do not contain all the
info necessary or useful for each read of an assembly. Should additional
information – like clipping positions etc. – be available in a XML trace
info file in NCBI format (see Fileformats), then set this option to yes and
it will be merged to the data loaded. See also -FILE: for the name of the

117

B.4. OPTIONS Thesis

xml file to load.
Please note: quality clippings given here will override quality clippings
loaded earlier or performed by mira. Minimum clippings will still be made
by the program, though.

readnaming scheme(rns)=sanger, tigr Default is sanger. Defines the center
naming scheme for read suffixes. Currently, only Sanger Institute and
TIGR naming schemes are supported out of the box.
How to choose: please read the documentation available at the differ-
ent centers or ask your sequence provider. In a nutshell, Sanger scheme
is “somename.[pqsfrw][12][bckdeflmnpt][a|b|c|...” (e.g. U13a08f10.p1ca),
TIGR scheme is “somenameTF*|TR*|TA*” (e.g. GCPBN02TF or
GCPDL68TABRPT103A58B).

external quality(eq)=none, SCF Default is SCF. Defines the source format
for reading qualities from external sources. Normally takes effect only
when these are not present in the format of the load job project (EXP and
FASTA can have them, CAF and PHD must have them).

external quality override(eqo)=on|yes|1, off|no|0 Default is no, only takes ef-
fect when load job is fofnexp. Defines whether or not the qualities from
the external source override the possibly loaded qualities from the load job
project. This might be of use in case some postprocessing software fiddles
around with the quality values of the input file but one wants to have the
original ones.

discard read on eq error(droeqe)=on|yes|1, off|no|0 Default is yes. Should
there be a major mismatch between the external quality source and the
sequence (e.g.: the base sequence read from a SCF file does not match the
originally read base sequence), should the read be excluded from assembly
or not. If not, it will use the qualities it had before trying to load the
external qualities (either default qualities or the ones loaded from the
original source).

print date(ps)=on|yes|1, off|no|0 Default is yes. Controls whether date and
time are printed out during the assembly. Suppressing it is not useful in
normal operation, only when debugging or benchmarking.

B.4.2 -ESTGENERAL (-EG)

General options to control EST assemblies (only useful for miraEST). switches
not belonging anywhere else.

118

B.4. OPTIONS Thesis

load straindata(lsd)=on|yes|1, off|no|0 Default is no. Straindata is a key
value file, one read per line. It is used by the program to differentiate
different types of SNPs appearing in organisms and classifying them.

est startstep(ess)=1 <= integer <= 4 Default is 1. Controls the starting step
of the EST assembly.
EST assembly is a three step process, each with different settings to the
assembly engine, with the result of each step being saved to disk. If results
of previous steps are present in a directory, one can easily “play around”
with different setting for subsequent steps by reusing the results of the
previous steps and directly starting with step two or three.

B.4.3 -ASSEMBLY (-AS)

General options for controlling the assembly.

minimum read length(mrl)=integer >= 20 Default is 40. Minimum length
that reads must have to be considered for the assembly. Shorter sequences
will be filtered out at the beginning of the process and won’t be present in
the final project.

num of loops(nol)=integer > 0 Default is 3. Defines how many iterations of
the whole assembly process are maximally done. Rule of thumb: quick
and dirty assembly (corresponds to the assembly process of mira V1.2 and
before): use 1. Assembly using read extensions and / or automatic contig
editing (-DP:ure and -ED:ace, see below): at least 2. More than 3 will
probably not change very much in the assembly. See also -AS:pbl and
-AS:mr below for loop parameters that affect the assembly and disentan-
glement of possible repeats.

prmb break loopsmax(pbl)=integer > 0 Default is 3. Defines how many
times a contig can be rebuilt during a main assembly loop (-AS:nol) if
misassemblies due to possible repeats are found.

spoiler detection(sd)=on|yes|1, off|no|0 Default is yes for mira and no mi-
raEST. A spoiler can be either a chimeric read or it is a read with long
parts of unclipped vector sequence still included (that was too long for
the -CL:pvc vector leftover clipping routines). A spoiler typically prevents
contigs to be joined, MIRA will cut them back so that they represent no
more harm to the assembly.
Recommended for assemblies of mid- to high-coverage genomic assem-
blies, not recommended for assemblies of ESTs as one might loose splice

119

B.4. OPTIONS Thesis

variants with that,
A minimum number of two assembly loops (-AS:nol) must be run for this
option to take effect.

sd last loop only(sdllo)=on|yes|1, off|no|0 Default is yes. Defines whether the
spoiler detection algorithms are run only for the last loop or for all loops
(-AS:nol).
Takes effect only if spoiler detection (-AS:sd) is on.

use emergency search stop(uess)=on|yes|1, off|no|0 Default is yes. An-
other important switch if you plan to assemble non-normalised EST li-
braries, where some ESTs may reach coverages of several hundreds or
thousands of reads. This switch lets MIRA save a lot of computational
time when aligning those extremely high coverage areas (but only there),
at the expense of some accuracy.

ess partnerdepth(esspd)=integer > 0 Default is 500. Defines the number of
potential partners a read must have for MIRA switching into emergency
search stop mode for that read.

use max contig buildtime(umcbt)=on|yes|1,off|no|0 Default is no. Defines
whether there is an upper limit of time to be used to build one contig.
Set this to yes in EST assemblies where you think that extremely high
coverages occur. Less useful for assembly of genomic sequences.

buildtime in seconds(bts)=integer > 0 Default is 10000. Depending on -
AS:umcbt above, this number defines the time in seconds alloted to build-
ing one contig.

B.4.4 -DATAPROCESSING (-DP)

Options for controlling some data processing during the assembly.

use read extension(ure)=on|yes|1, off|no|0 Default is yes. mira expects the
sequences it is given to be quality clipped. During the assembly though,
it will try to extend reads into the clipped region by analysing alignments
between reads that were found to be valid.

tag polyat at ends(tpae)=on|yes|1, off|no|0 Default is no. This option is use-
ful in EST assembly. Poly-AT stretches at end of reads that were not cor-
rectly masked or clipped in preprocessing steps from external programs
get tagged here. The assembler will not use these stretches for critical

120

B.4. OPTIONS Thesis

operations. Additionally, the tags do provide a good visual anchor when
looking at the assembly with different programs.

polybase window len(pbwl)=integer > 0 Default is 7. Defines the window
length within which all bases (except the maximum number of errors al-
lowed, see below) must be either A or T to be considered a polybase stretch.

polybase window maxerrors(pbwme)=integer > 0 Default is 2. Defines the
maximum number of errors allowed in a given window length (see above)
so that a stretch is considered to be a polybase stretch. The distribution
of these errors is not important.

polybase window gracedistance(pbwgd)=integer > 0 Default is 9. Defines
the number of bases from the end of a sequence (if masked: from the end
of the masked area) within which a polybase stretch is looked for without
finding one.

B.4.5 -CLIPPING (-CL)

Controls for clipping options: when and how sequences should be clipped.

possible vector clip(pvc)=on|yes|1, off|no|0 Default is yes. mira will try to
identify possible sequencing vector relicts present at the start of a se-
quence and clip them away. These relicts are usually a few bases long
and were not correctly removed from the sequence in data preprocessing
steps of external programs.
You might want to turn off this option if you know (or think) that your
data contains a lot of repeats and the option below to fine tune the clip-
ping behaviour does not give the expected results.

pvc maxlenallowed(pvcmla)=integer >= 0 Default is 12. The clipping of
possible vector relicts option works quite well. Unfortunately, especially
the bounds of repeats or differences in EST splice variants sometimes
show the same alignment behaviour than possible sequencing vector re-
licts and could therefore also be clipped.
To refrain the vector clipping from mistakenly clip repetitive regions or
EST splice variants, this option puts an upper bound to the number of
bases a potential clip is allowed to have. If the number of bases is below
or equal to this threshold, the bases are clipped. If the number of bases
exceeds the threshold, the clip is NOT performed.
Setting the value to 0 turns off the threshold, i.e., clips are then always
performed if a potential vector was found.

121

B.4. OPTIONS Thesis

quality clip(qc)=on|yes|1, off|no|0 Default is no, but is set automatically to
yes when using the quickmode switches -fasta or -phd (can be turned off
again by subsequent options afterwards). This will let mira perform its
own quality clipping before sequences are entered into the assembly. The
clip function performed is a sequence end window quality clip with backit-
eration to get a maximum number of bases as useful sequence. Note that
the bases clipped away here can still be used afterwards if there is enough
evidence supporting their correctness when the option -AS:ure is turned
on.

qc minimum quality(qcmq)=integer >= 15 and <= 35 Default is 20. This is
the minimum quality bases in a window require to be accepted. Please
be cautious not to take too extreme values here, because then the clipping
will be too lax or too harsh. Values below 15 and higher than 30-35 are
not recommended.

qc window length(qcwl)=integer >= 10 Default is 30. This is the length of a
window in bases for the quality clip.

maskedbases clip(mbc)=on|yes|1, off|no|0 Default is no, but is set automat-
ically to yes when using the quickmode switches -fasta or -phd (can be
turned off again by subsequent options afterwards). This will let mira
perform a ’clipping’ of bases that were masked out (replaced with the
character X). It is generally not a good idea to use mask bases to remove
unwanted portions of a sequence, the EXP file format has excellent pos-
sibilities to circumvent this. But because a lot of preprocessing software
are built around cross match, scylla- and phrap-style of base masking, the
need arised for mira to be able to handle this, too. mira will look at the
start and end of each sequence to see whether there are masked bases
that should be ’clipped’.

mbc gap size(mbcgs)=integer >= 0 Default is 15. While performing the clip
of masked bases, mira will look if it can merge larger chunks of masked
bases that are a maximum of -CL:mbcgs apart.

mbc max front gap(mbcmfg)=integer >= 0 Default is 30. While performing
the clip of masked bases at the start of a sequence, mira will allow up to
this number of unmasked bases in front of a masked stretch.

mbc max end gap(mbcmeg)=integer >= 0 Default is 60. While performing
the clip of masked bases at the end of a sequence, mira will allow up to
this number of unmasked bases behind a masked stretch.

122

B.4. OPTIONS Thesis

B.4.6 -ALIGN (-AL)

The align options control the behaviour of the Smith-Waterman alignment rou-
tines. Only read pairs which are confirmed here may be included into contigs.

bandwidth in percent(bip)=integer>0 and <=100 Default is 15. The banded
Smith-Waterman aligment uses this percentage number to compute the
bandwitdh it has to use when computing the alignment matrix. E.g., ex-
pected overlap is 150 bases, bip=10 -> the banded SW will compute a
band of 15 bases to each side of the expected alignment diagonal, thus al-
lowing up to 15 unbalanced inserts / deletes in the alignment. INCREAS-
ING AND DECREASING THIS NUMBER: increase: will find more non-
optimal alignments, but will also increase SW runtime between linear and
ˆ2. decrease: the other way round, might miss a few bad alignments but
gaining speed.

bandwidth max(bmax)=integer>0 Default is 50. Maximum bandwidth in
bases to each side.

bandwidth max(bmin)=integer>0 Default is 10. Minimum bandwidth in
bases to each side.

min overlap(mo)=integer>0 Default is 15. Minimim number of overlapping
bases needed in an alignment of two sequences to be accepted.

min score(ms)=integer>0 Default is 15. Describes the minimum score of an
overlap to be taken into account for assembly. mira uses a default scoring
scheme for SW align: each match counts 1, a match with an N counts 0,
each mismatch with a non-N base -1 and each gap -2. Take a bigger score
to weed out a number of chance matches, a lower score to perhaps find
the single (short) alignment that might join two contigs together (at the
expense of computing time and memory).

min relative score(mrs)=integer>0 and <=100 Default is 65. Describes the
min % of matching between two reads to be considered for assembly. In-
creasing this number will save memory, but one might loose possible align-
ments. I propose a maximum of 80 here. Decreasing below 55% will make
memory and time consumption probably explode.

extra gap penalty(egp)=on|yes|1, off|no|0 Default is yes. Defines whether or
not to increase penalties applied to alignments containing long gaps. Set-
ting this to ’yes’ might help in projects with frequent repeats. On the
other hand, it is definitively disturbing when assembling very long reads

123

B.4. OPTIONS Thesis

containing multiple long indels in the called base sequence ... although
this should not happen in the first place and is a sure sign for problems
lying ahead.

gap penalty level(gpl)=low|0, medium|1, high|2, est splitsplices|10 Default
is low. Has no effect if extra gap penalty is off. Defines an extra penalty
applied to ’long’ gaps. There are these are predefined levels: low - use this
if you expect your base caller frequently misses 2 or more bases. medium
- use this if your base caller is expected to frequently miss 1 to 2 bases.
high - use this if your base caller does not frequently miss more than 1
base.
For some stages of the EST assembly process, a special value
est splitsplices is used.

extra mismatch penalty(emp)=on|yes|1, off|no|0 Default is yes. Defines
whether or not to reject alignments containing long stretches of mis-
matches. Setting this to ’yes’ might help in projects with frequent repeats.
Also very useful in EST projects to prevent the assembly of different splice
variants.

emp windowlen(empwl)=integer>0 Default is 30. Has no effect if ex-
tra mismatch penalty is off. Defines the length of the window of bases
that is looked for to contain too many mismatches.

emp maxmitches(empmm)=integer>0 Default is 15. Has no effect if ex-
tra mismatch penalty is off. Defines how many errors must occur in the
window before an alignment is rejected.

B.4.7 -CONTIG (-CO)

The contig options control the behaviour of the contig objects.

analysis(an)=none, text, signal Default is signal. When adding reads to a con-
tig, dangerous regions can get an extra integrity check.
none = no extra check.
text = check is only text-based.
signal = check is signal based, if the SCF trace is not available, fallback

is ’text’.
For the time being, only regions tagged as ALUS or REPT in the experi-
ment file are considered dangerous.

124

B.4. OPTIONS Thesis

reject on drop in relscore(rodirs)=integer>0 and <=100 Default is 7. When
adding reads to a contig, reject the reads if the drop in the quality of the
consensus is > the given value in %. Lower values mean stricter checking.
This value is doubled should a read be entered that has a template partner
(a read pair) at the right distance.

danger max error rate(dmer)=integer>=1 and <=100 Default is 1. When
adding reads to a contig, reject the reads if the error in zones known
as dangerous exceeds the given value in %. Lower values mean stricter
checking in these danger zones.
For the time being, only regions tagged as ALUS or REPT in the experi-
ment file are considered dangerous.

mark repeats(mr)=on|yes|1, off|no|0 Default is yes. One of the most impor-
tant switches in MIRA: if set to yes, MIRA will try to resolve misassem-
blies due to repeats by identifying single base stretch differences and tag
those critical bases as PRMB (Probable Repeat Marker Base). This switch
is also needed when MIRA is run in EST mode to identify possible inter-,
intra- and intra-and-interorganism SNPs.

min prmb coverage(mpc)=integer >= 2 Default is 3. Only takes effect when
-CO:mr (see above) is set to yes. This defines the minimum coverage
needed for the PRMB (Probable Repeat Marker Bases) detection routines.
Setting this to a low number increases sensitivity, but might produce a
few false positives, resulting in reads being thrown out of contigs because
of falsely identified possible repeat markers.

num prmb coverage(npz)=integer >= 2 Default is 2. Only takes effect when
-AS:mr is set to yes. This defines the minimum number of possible PRMB
zones defined within a certain distance before these are really treated as
PRMB.

min groupqual for prmb tagging(mgqpt)=integer >= 25 Default is 30.
Takes only effect when -AS:mr is set to yes. This defines the minimum
quality of a group of bases to be taken into account as potential repeat
marker. The lower the number, the more sensitive you get, but lowering
below 25 is not recomended as a lot of wrongly called bases can have
a quality approaching this value and you’d end up with a lot of false
positives. The higher the overal coverage of your project, the better, and
the higher you can set this number. A value of 35 will probably remove
all false positives, a value of 40 will probably never show false positives.

125

B.4. OPTIONS Thesis

min groupqual for wrmbprmb change(mgqwpc)=integer >= 30 Default is
45. Takes only effect when -AS:mr is set to yes. Probable repeat marker
bases without supporting bases around them are tagged as WRMB (Weak
Repeat Marker Base). These can be transformed into PRMBs if the qual-
ity value of the base group matches or exceeds the number given here.

endread mark exclusion area(emea)=integer >= 0 Default is 15. Takes
only effect when -AS:mr is set to yes. Using the end of sequences is always
a bit risky, as wrongly called bases tend to crowd there or some sequenc-
ing vector relicts hang around. It is even more risky to use these stretches
for detecting possible repeats, so one can define an exclusion area where
the bases are not used when determining whether a mismatch is due to
repeats or not.

use template information(uti)=on|yes|1, off|no|0 Default is Yes. Two reads
sequenced from the same clone template form a read pair with a known
minimum and maximum distance. This feature will definitively help for
contigs containing lots of repeats. Set this to ’yes’ if your data contains
information on insert sizes.
Information on insert sizes can be given via the SI tag in EXP files (for
each read pair individually), or for the whole project using -CO:ismin and
-CO:ismax (see below).

insertsizeminimum(ismin)=integer >= 0 Default is 500. The minimum dis-
tance that read pairs may be apart. There is an additional error margin
of 10% subtracted from this value during internal computations.

insertsizemaximum(ismax)=integer >= 0 Default is 5000. The maximum dis-
tance that read pairs may be apart. There is an additional error margin
of 10% added to this value during internal computations.

B.4.8 -EDIT (-ED)

General options for controlling the integrated automatic editor.

automatic contig editing(ace)=on|yes|1, off|no|0 Default is yes. Once con-
tigs have been build, mira will call a built-in version of the automatic
contig editor EdIt. EdIt will try to resolve discrepancies in the contig by
performing trace analysis and correct even hard to resolve errors. This
option is always useful, but especially in conjunction with -GE:nol and
-GE:ure (see above).

126

B.4. OPTIONS Thesis

strict editing mode(sem)=on|yes|1, off|no|0 Default is yes. If set to yes, the
automatic editor will not take error hypotheses with a low probability into
account, even if all the requirements to make an edit are fulfilled.

confirmation threshold(ct)=integer, 0 < x <= 100 Default is 50. The higher
this value, the more strict the automatic editor will apply its internal rule
set. Going below 40 is not recommended.

B.4.9 -DIRECTORY (-DIR, -DI)

General options for controlling where to find or where to write data.

gap4da=<directoryname> Default is gap4da. Defines the extension of the
directory where mira will write the result of an assembly ready to import
into the Staden package (GAP4) in Direct Assembly format. The name of
the directory will then be <projectname> .<extension>

exp=<directoryname> Default is .. Defines the directory where mira should
search for experiment files (EXP).

scf=<directoryname> Default is .. Defines the directory where mira should
search for SCF files.

log=<directoryname> Default is miralog. Defines the directory where mira
will write some log files to. Note that the name of the actual project will
be prepended.

B.4.10 -FILE (-FI)

The file options allows you to define your own input and output files.

fofnexpin(fei)=string Default is <projectname> in.fofn. Defines the file of file-
names where the names of the EXP files of a project are located.

fofnphdin(fpi)=string Default is <projectname> in.fofn. Defines the file of file-
names where the names of the PHD files of a project are located. Note:
this is currently not available.

phdin(pi)=string Default is <projectname> in.phd. Defines the file of where
all the sequences of a project are in PHD format.

fastain(fai)=string Default is mira in.fasta. Defines the fasta file to load se-
quences of a project from.

127

B.4. OPTIONS Thesis

fastaqualin(fqi)=string Default is mira in.fasta.qual. Defines the fasta file to
load base qualities of a project from. Although the order of reads in the
quality file must not be the same as in the fasta or fofn, it is strongly
recommended that they are (saves considerable time when loading big
projects).

cafin(ci)=string Default is mira in.caf. Defines the file to load a CAF project
from. Filename must end with ’.caf ’.

straindatain(sdi)=string Default is mira straindata in.txt. Defines the file to
load straindata from. Only used in EST projects (miraEST).

xmltraceinfoin(xtii)=string Default is mira xmltraceinfo in.xml. Defines the
file to load a trace info file in XML format from. This can be used both
when merging XML data to loaded files or when loading a project from an
XML trace info file.

cafout(co)=string Default is mira out.caf. Defines the file in CAF format to
save an assembled project to. Filename must end with ’.caf ’.

B.4.11 -OUTPUT (-OUT)

Options for controlling which results to write to which type of files.
There are 3 types of results: result, temporary results and extra temporary
results. One probably needs only the results. Temporary and extra tempo-
rary results are given as convenience for trying to find out why mira set some
PRMBs or disassembled some contigs.
Output can be generated in these formats: CAF, Gap4 Directed Assembly,
FASTA, ACE, HTML and simple text. Please note that the ACE output is ex-
perimental as I don’t have the necessary programs (phrap, consed) to verify the
output. (Anyone who wants to sponsor them? :-)
Naming conventions of the files follow the rules described in section Input /
Output, subsection Filenames.

output result caf(orc)=on|yes|1, off|no|0 Default is yes.

output result gap4da(org)=on|yes|1, off|no|0 Default is yes.

output result fasta(orf)=on|yes|1, off|no|0 Default is yes.

output result ace(ora)=on|yes|1, off|no|0 Default is yes.

output result txt(ort)=on|yes|1, off|no|0 Default is yes.

output result html(orh)=on|yes|1, off|no|0 Default is yes.

128

B.4. OPTIONS Thesis

output tmpresult caf(otc)=on|yes|1, off|no|0 Default is no.

output tmpresult gap4da(otg)=on|yes|1, off|no|0 Default is no.

output tmpresult fasta(otf)=on|yes|1, off|no|0 Default is no.

output tmpresult ace(ota)=on|yes|1, off|no|0 Default is no.

output tmpresult txt(ott)=on|yes|1, off|no|0 Default is no.

output tmpresult html(oth)=on|yes|1, off|no|0 Default is no.

output exttmpresult caf(oetc)=on|yes|1, off|no|0 Default is no.

output exttmpresult gap4da(oetg)=on|yes|1, off|no|0 Default is no.

output exttmpresult fasta(oetf)=on|yes|1, off|no|0 Default is no.

output exttmpresult ace(oeta)=on|yes|1, off|no|0 Default is no.

output exttmpresult txt(oett)=on|yes|1, off|no|0 Default is no.

output exttmpresult html(oeth)=on|yes|1, off|no|0 Default is no.

B.4.12 Quick mode switches

[-fasta | -fasta=<filename>] Sets some parameters suited for loading FASTA
files. The version with =<filename> will also set the input file to the given
filename. A double dash (–fasta) may also be used instead of a single one.

[-phd | -phd=<filename>] Sets some parameters suited for loading PHD files.
The version with =<filename> will also set the input file to the given
filename. A double dash (–phd) may also be used instead of a single one.

[-caf | -caf=<filename>] Sets some parameters suited for loading CAF files.
The version with =<filename> will also set the input file to the given
filename. A double dash (–caf) may also be used instead of a single one.

[-project=<name>] Same as -GE:project. A double dash (–project) may also
be used instead of a single one, also ’projectname’ instead of ’project’.

B.4.13 Other switches

[-params=<filename>] Loads parameters from the filename given. Allows a
maximum of 10 levels of recursion, i.e. a -params option appearing within
a file that loads other parameter files (though I cannot think of useful
applications with more than 3). A double dash (–params) may also be
used instead of a single one, also ’parameterfile’ instead of ’params’.

129

B.5. INPUT / OUTPUT Thesis

[-borg] Sets a bunch of parameters to have mira try to assemble as many reads
as possible. Will slow down the assembly process.
”We are MIRA of borg. You will be assembled, resistance is futile!”

B.5 Input / Output

B.5.1 Filenames

<projectname> in.fofn File of filenames containing the names of the ex-
periment or phd files to assemble when the -GE:lj=FOFNEXP or -
GE:lj=FOFNPHD option is used. One filename per line, blank lines ac-
cepted, lines starting with a hash (#) treated as comment lines, nothing
else. Use -FI:fofnin(fei) or -FI:fofnin(fpi) to change the default name.

<projectname> in.phd File containing the sequences (and their qualities)
to assemble in PHD format.

<projectname> in.fasta File containing sequences and ...

<projectname> in.fasta.qual ... file containing quality values of se-
quences for the assembly in FASTA format.

<projectname> in.caf File containing the sequences (and their qualities)
to assemble in CAF format. This format also may contain the result of an
assembly (the contig consensi).

<projectname> out.<type> Assembled project written in type = (gap4da /
caf / ace / fasta / html / text) format by mira, final result. Type gap4da is a
directory containing experiment files and a file of filenames (called ’fofn’),
all other types are files. gap4da, caf, ace contain the complete assembly
information suitable for import into different postprocessing tools (gap4,
consed and others). fasta contains the contig consensi (and .fasta.qual the
consensus qualities). html and text contain visual representations of the
assembly suited for viewing in browsers or as simple text file.

<projectname> info contigreadlist.txt This file contains information
which reads have been assembled into which contigs (or singlets).

<projectname> info contigstats.txt This file contains statistics about
the contigs themselves, their length, average consensus quality, number
of reads, maximum and average coverage, average read length, number of
A, C, G, T, N, X and gaps in consensus.

130

B.5. INPUT / OUTPUT Thesis

<projectname> info consensustaglist.txt This file contains informa-
tion about the tags (and their position) that are present in the consensus
of a contig.

<projectname> info readstooshort A list containing the names of those
reads that have been sorted out of the assembly before any processing
started only due to the fact that they were too short.

<projectname> info readtaglist.txt This file contains information
about the tags and their position that are present in each read. The read
positions are given relative to the forward direction of the sequence (i.e.
as it was entered into the the assembly).

<projectname> error reads invalid A list of sequences that have been
found to be invalid due to various reasons (given in the output of the as-
sembler).

B.5.2 Fileformats

EXP Standard experiment files used in genome sequencing. Correct
EXP files are expected. Especially the ID record (containing
the id of the reading) and the LN record (containing the name
of the corresponding trace file) should be correctly set. See
http://www.sourceforge.net/projects/staden/ for links to on-
line format description.

SCF The Staden trace file format that has established itself as com-
pact standard replacement for the much bigger ABI files. See
http://www.sourceforge.net/projects/staden/ for links to on-
line format description.
The SCF files should be V2-8bit, V2-16bit, V3-8bit or V3-16bit and can be
packed with compress or gzip.

CAF Common Assembly Format (CAF) developed by the Sanger Centre.
http://www.sanger.ac.uk/Software/formats/CAF/ provides a de-
scription of the format and some software documentation. They had a link
to downloadable binaries of the important caf2gap and gap2caf tools, but
it seems they now just offer the source.

ACE The assembly file format used mainly by phrap and consed. Support for
.ace output is currently only in test status in mira as documentation on
that format is ... sparse and I currently don’ have access to consed to

131

B.5. INPUT / OUTPUT Thesis

verify my assumptions.
Using consed, you will need to load projects with -nophd to
view them. Tags are rudimentary supported, this should
improve over time. You might also want to try clview
(http://www.tigr.org/tdb/tgi/software/) from TIGR to look
at .ace files.

HTML Hypertext Markup Language. Projects written in HTML format can be
viewed directly with any table capable browser. Display is even better if
the browser knows style sheets (CSS).

FASTA A simple format for sequence data, see
http://www.ncbi.nlm.nih.gov/BLAST/fasta.html. An often
used extension of that format is used to also store quality values in a
similar fashion, these files have a .fasta.qual ending.

PHD This file type originates from the phred basecaller and contains basically
– along with some other status information – the base sequence, the base
quality values and the peak indices, but not the sequence traces itself.

traceinfo.XML XML based file with information relating to traces.
Used at the NCBI and ENSEMBL trace archive to store addi-
tional information (like clippings, insert sizes etc.) for projects. See
http://www.ncbi.nlm.nih.gov/Traces/trace.cgi?cmd=show&

f=rfc&m=main&s=rfc for a description of the fields used.

CAML Common Assembly Markup Language, an XML based assembly descrip-
tion language. This file type originates from the PGA (Paracel Genome
Assembler) and PTA (Paracel Transcript Assembler) programs. mira is
currently not able to read or write this file format.

B.5.3 STDOUT

The actual stage of the assembly is written to STDOUT, giving status messages
on what mira is actually doing.

Some debugging information might also be written to STDOUT if mira gen-
erates error messages.

B.5.4 STDERR

During the assembly, mira might dump some messages to standard error. Ba-
sically, three error classes exist:

132

B.6. TAGS USED IN THE ASSEMBLY BY MIRA AND EDIT Thesis

WARNING Messages in this error class do not stop the assembly but are meant
as an information to the user. In some rare cases these errors are due to
(an always possible) error in the I/O routines of mira, but nowadays they
are mostly due to unexpected (read: wrong) input data and can be traced
back to errors in the preprocessing stages. If these errors arise, you defini-
tively DO want to check how and why these errors came into those files in
the first place.
Frequent cause for warnings include missing SCF files, SCF files contain-
ing known quirks, EXP files containing known quirks etc.

FATAL Messages in this error class actually stop the assembly. These are mostly
due to missing files that mira needs or to very garbled (wrong) input data.
Frequent causes include naming an experiment file in the ’file of file-
names’ that could not be found on the disk, same experiment file twice
in the project, suspected errors in the EXP files, etc.

INTERNAL These are true programming errors that were caught by internal
checks. Should this happen, please mail the output of STDOUT and
STDERR to the authors.

B.5.5 Logfiles

During assembly, mira will write a whole lot of logfiles which all will be placed
into a subdirectory named ”<projectname> miralog”

Please do not delete the project where errors happened. I will get in touch
with you for additional information that might possibly be present in temporary
files and the logfile. They are not deleted in cases like this.

B.6 Tags used in the assembly by MIRA and EdIt

mira uses and sets a couple of tags during the assembly process. That is, if
information is known before the assembly, it can be stored in tags (in the EXP
and CAF formats) and will be used in the assembly.

B.6.1 Tags read (and used)

– ALUS, REPT: Sequence stretches tagged as ALUS (ALU Sequence) or
REPT (general repetitive sequence) will be handled with extreme care

133

B.6. TAGS USED IN THE ASSEMBLY BY MIRA AND EDIT Thesis

during the assembly process. The allowed error rate after automatic con-
tig editing within these stretches is normally far below the general al-
lowed error rate, leading to much higher stringency during the assembly
process and subsequently to a better repeat resolving in many cases.

– PRMB, WRMB: Probable Repeat Marker Base and Weak Repeat
Marker Base. These tags are used on an individual per base basis for
each read. They denote bases that have been identified as crucial for re-
solving repeats, often denoting a single SNP within several hundreds or
thousands of bases. While a PRMB is quite probable, the WRMB really is
either weak (there wasn’t enough comforting information in the vicinity
to be really sure) or not supported by other probable repeat markes in the
vicinity.

– other: Other tags in reads will be read and passed through the assembly
without being changed and they currently do not influence the assembly
process.

B.6.2 Tags set (and used)

– PRMB, WRMB: See ”Tags read (and used)” above for a description what
these tags mean.
mira will automatically set these tags when it encounters repeats and will
tag exactly those bases that can be used to discern the differences.
Seeing such a tag in the consensus means that mira was not able to finish
the disentanglement of that special repeat stretch or that it found a new
one in one of the last loops without having the opportunity to resolve the
problem.

– ED C, ED I, ED D: EDit Change, EDit Insertion, EDit Deletion. These
tags are set by the integrated automatic editor EdIt and show which edit
actions have been performed.

– PAOS, PROS, PIOS: Possible intrA Organism SNP, Possible interR
Organism SNP, Possible Inter- and intra Organism SNP. These tags are
set by mira when it runs in EST assembly-SNP discovering mode and
denotes SNPs as they occur within an organism (PAOS), between two or
more organisms (PROS) or within and between organisms (PIOS).

134

B.7. REQUIREMENTS Thesis

B.7 Requirements

To use mira itself, one doesn’t need very much:

– the sequences in EXP, CAF, PHD, or FASTA format (ideally preprocessed)

– mira, some memory and disk space

Viewing the results or preprocessing the sequences:

– A browser who understands tables is needed to view the HTML output.
A browser knowing style sheets (CSS) is recommended, as different tags
will be highlighted. Konqueror, Opera, Mozilla, Netscape and Internet
Explorer all do fine, lynx is not really ... optimal.

– A text viewer for the different textual output files.

– You’ll want GAP4 (generally speaking: the Staden package) to preprocess
the sequences, visualise and eventually rework the results when using
gap4da output. The Staden package comes with a fully featured sequence
preparing and annotating engine (pregap4) that is very useful to prepro-
cess your data (conversion between file types, quality clipping, tagging
etc.).
See http://www.sourceforge.net/projects/staden/ for further
information.

– phred(basecaller) - cross match(sequence comparison and filtering) -
phrap(assembler) - consed(assembly viewer and editor). This is another
package that can be used for this type of job, but requires more program-
ming work. The fact that sequence stretches are masked out (overwritten
with the character X) if they shouldn’t be used in an assembly doesn’t re-
ally help and is considered harmful (but it works).
See http://www.phrap.org/ for further information.

– Viewing .ace output without consed can be done with clview
(http://www.tigr.org/tdb/tgi/software/) from TIGR.

– Paracel (http://www.paracel.com) also offers useful tools for working
with sequences: TraceTuner (modified and improved basecaller based on
phred), PFP (sequence filtering package) and PGA / PTA (genome and EST
assembler based on the CAP4 assembler) and the corresponding viewers.
The filtering package fortunately knows two modes of operation (mask-
ing bases and tagging them) and therefore integrates nicely into existing

135

B.8. SPEED AND MEMORY CONSIDERATIONS Thesis

workflows based on the masking mode while offering advanced features
like tagging (through XML files) when used in that mode.

As always, most of the time a combination of several different packages is pos-
sible.

B.8 Speed and memory considerations

Memory consumption has increased since the last public V1.4.x versions, which
is mainly due to temporary memory needed for an extremely fast “all against
all” read comparison.

– As a rough rule of thumb, you’ll have to provide about 20k to 25k of RAM
fore each sequence (with approx 1000 bases).

– About 2/5 of this memory consumption is only needed during the fast read
comparison part (SKIM) and is freed as soon as that part finishes.

– A certain amount of temporary RAM is used for Smith-Waterman
matches. This amount depends on the size of your reads and is a square
to their length. Maximum usage examples: 4 MB for reads of length 1000,
16 MB for length 2000, 100 MB for length 5000

The times given here are only approximate and were gathered on my small
home development box (Athlon 900) using a single processor and some debug
code compiled in, somewhat slowing down the whole process. Here are the
times for a non-normalized (thus highly repetitive) EST project, 7651 reads
with a mean length of 450 used bases,

– The fast filtering algorithm performs about 1 million sequence compar-
isons per second (57 seconds).

– Banded Smith-Waterman performs around 500 sequence alignments
(with a 15% band to each side, which is quite generous), 4:26 for about
135000 alignment checks.

– Assembling the whole project in one main assembly loop, including re-
solving very high coverage contigs (>500 sequences) in multiple passes
and splitting them into different SNP and splice variants took about 45
minutes.

Assembling for example a small genomic project with 720 reads forming a 35k
bases contig in two main loop iterations, resolving minor repeat misassemblies,
full read extension and automatic contig editing takes 5:30 minutes.

136

B.9. USAGE Thesis

B.9 Usage

Mira can be used in two different ways: building assemblies from scratch or
performing reassembly on existing projects.

B.9.1 Assembly from scratch with GAP4 and EXP files

A simple GAP4 project will do nicely. Please take care of the following: You need
already preprocessed experiment / fasta / phd files, i.e., at least the sequencing
vector should have been tagged (in EXP files) or masked out (FASTA or PHD
files). It would be nice if some kind of not too lazy quality clipping had also been
done for the EXP files, pregap4 should do this for you.

Step 1 Create a file of filenames (named ”mira in.fofn”) for the project you wish
to assemble. The file of filenames should contain the newline separated
names of the EXP-files and nothing else.

Step 2 Execute the mira assembly, eventually using command line options or out-
put redirection:

/path/to/the/mira/package/mira
or simply

mira
if Mira is in a directory which is in your PATH. The result of the assembly
will now be in files named ’mira out.caf ’, ’mira out.html’ etc. or in gap4
direct assembly format in the ’mira out.gap4da’ directory.

Step 3a Have a quick look at how the project looks like by loading the file
’mira out.html’ into your favourite web browser or ...

Step 3b ... change to the gap4da directory:
cd mira out.gap4da

start gap4:
gap4

choose the menu ’File->New’ and enter a name for your new database
(like ’test’). Then choose the menu ’Assembly->Directed assembly’. Enter
the text ’fofn’ in the entry labeled ”Input readings from List or file name”
and enter the text ’failures’ into the entry labeled ”Save failures to List or
filen name”. Press ”OK”.
That’s it.

Out-of-the box example
Mira comes with a really small toy project to test usability on a given system.

137

B.10. KNOWN PROBLEMS / BUGS Thesis

Go to the example directory and follow the instructions given in the section for
own projects above, but start with step 2. Eventually, you might want to start
mira while redirecting the output to a file for later analysis.

B.10 Known Problems / Bugs

File Input / Output:

1. mira can only read unedited EXP files.

2. due to the fact that the Sanger Centre currently doesn’t offer caf2gap and
gap2caf precompiled (and compiling them is a non-trivial task), the op-
tion to reassemble GAP4 projects after working on them is currently not
possible.

3. ACE output still is experimental and might contain errors, especially the
tag format is shaky.

4. A minor problem might arise in conjunction with the CR, CL and CS tags
in EXP files. CR and CL define right and left clips, CS a range. I have
seen preprocessors mixing that up. So, don’t worry if suddenly some of
your reads are tagged as cloning vector. It’s probably the preprocessors
fault (but signal this to me anyway).

Assembly process:

1. The routines for determining Probable Repeat Marker Bases (PRMB)
are sometimes too sensitive, which sometimes leads to excessive base
tagging and preventing right assemblies in subsequent assembly pro-
cesses. The parameters you should look at for this problem are -
CO:mpc:npz:mgqpt:mgqwpc. Also look at -CL:pvc and -CO:emea if you
have a lot of sequencing vector relicts at the end of the sequences.

B.11 Caveats

– mira cannot work (yet) with EXP files resulting from GAP4 that already
have been edited. If you want to reassemble an edited GAP4 project, con-
vert it to CAF format and use the -GE=lj=CAF option.

– As also explained earlier, mira relies on sequencing vector being recog-
nised in preprocessing steps by other programs. Sometimes, when a whole

138

B.11. CAVEATS Thesis

stretch of bases is not correctly marked as sequencing vector, the reads
might not be aligned into a contig although they might otherwise match
quite perfectly. You can use -CL:pvc and -CO:emea to address this prob-
lem. Also having the assembler work with less strict parameters may help
out of this.

– mira has been developed to assemble shotgun sequencing or EST sequenc-
ing data. There are no explicit limitations concerning length or number of
sequences. However, there are a few implicit assumptions that were made
while writing portions of the code:

1. Sequence data produced by electrophoresis rarely surpasses 1000 us-
able bases and I never heard of more than 1100. The fast filtering
SKIM relies on the fact that sequences will never exceed 10000 bases
in length.

2. The next problem that might arise with ’unnatural’ long sequence
reads will be my implementation of the Smith-Waterman alignment
routines. I use a banded version with linear running time (linear to
the bandwidth) but quadratic space usage. So, comparing two ’reads’
of length 5000 will result in memory usage of 100MB. I know that this
could be considered as a flaw. On the other hand - unless someone
comes up with electrophoresis producing reads with more than 2000
usable bases - I see no real need to change this as long as there are
more important things on the TODO list. Of course, if anyone is
willing to contribute a fast banded SW alignment routine which runs
in linear time and space, just feel free to contact the authors.

3. Current data structures allow for a worst case read coverage of maxi-
mally 16384 reads on top of the other. Anyone who wants to comment
on that?

Though the pathfinder and alignment engine has almost completely changed
from the V1.x versions, I am quite confident that the underlying strategy for
the assembly problem contains no vital flaw. If you have suggestions or spot
problems, feel free to mail.

Note: Versions with uneven minor versions (e.g. 1.1.x, 1.3.x, ..., 2.1.x, ... etc.)
are test versions which might be unstable in parts (although I don’t think so).
But to catch possible bugs, test versions of mira are distributed with tons of
internal checks compiled into the code, making it somewhere between 10% and
50% slower than it could be.

139

B.12. TODOS Thesis

B.12 TODOs

These are some of the topics on my TODO list for the next revisions to come:

1. Hidden data (parts of a read that have been clipped off by quality clipping)
is almost optimally used by the assembler, but it considerably slows down
the process when searching for that. I am working on optimising it.

2. Reading edited experiment files for reassembling edited projects.

3. Writing and possibly reading CAML format. Although this feature is
somewhat lower on the TODO list, it nevertheless is there.

4. Assembling ESTs allows to make some assumptions that could be benefi-
cial to the potential gene sequence that is assembled.

5. Others nifty ideas that I have not completely thought out yet.

B.13 Working principles

To avoid the ”garbage-in, garbage-out” problematics, Mira uses a ’high quality
alignments first’ contig building strategy. This means that the assembler will
start with those regions of sequences that have been marked as good quality
(high confidence region - HCR) with low error probabilities (the clipping must
have been done by the base caller or other preprocessing programs, e.g. pre-
gap4) and then gradually extends the alignments as errors in different reads
are resolved through error hypothesis verification and signal analysis.

This assembly approach relies on some of the automatic editing functionality
provided by the EdIt package which has been integrated in parts within mira.

This is an aproximate overview on the steps that are executed while assem-
bling:

1. All the experiment / phd / fasta sequences that act as input are loaded
(or the CAF project). Qualities for the bases are loaded from the SCFs if
needed.

2. The high confidence region (HCR) of each read is compared with a quick
algorithm to the HCR of every other read to see if it could match and have
overlapping parts (this is the ’SKIM’ filter).

3. All the reads which could match are being checked with an adapted
Smith-Waterman alignment algorithm (banded version). Obvious mis-
matches are rejected, the accepted alignments form one or several align-
ment graphs.

140

B.14. LICENSE, DISCLAIMER AND COPYRIGHT Thesis

4. Optional pre-assembly read extension step: mira tries to extend HCR of
reads by analysing the read pairs from the previous alignment. This is a
bit shaky as reads in this step have not been edited yet, but it can help.
Go back to step 2.

5. A contig gets built by building a preliminary partial path through the
alignment graph (through in-depth analysis up to a given level) and then
adding the most probable overlap candidates to a given contig. Contigs
may reject reads if these introduce to many errors in the existing con-
senus. Errors in regions known as dangerous (for the time being only
ALUS and REPT) get additional attention by performing simple signal
analysis when alignment discrepancies occur.

6. Optional: the contig can be analysed and corrected by the automatic editor
(EdIt).

7. Long term repeats are searched for, bases in reads of different repeats
that have been assembled together but differ sufficiently (for EdIT so that
they didn’t get edited and by phred quality value) get tagged with PRMB.

8. Go back to step 5 if there are reads present that have not been assembled
into contigs.

9. Optional post-assembly read-extension: mira extends the HCR of the
reads that have been assembled into the contigs.

10. Optional: Detection of spoiler reads that prevent joining of contigs. Rem-
edy by shortening them.

11. Optional: Write out a checkpoint assembly file and go back to step 2.

12. The resulting project is written out to files.

B.14 License, Disclaimer and Copyright

Stable versions are all versions with even minor versions, e.g. 1.4.x, 2.0.x ... etc.
Test versions are version with uneven minor versions, e.g. 1.1.x, 1.3.x, ...,

2.1.x, ... etc. and version numbers declared as ’prerelease’ or ’release candidate’,
e.g. 1.xrc1, 1.xrc2, ... etc. .

Restricted versions have as only restriction the number of sequences they
allow to assemble. This limit is currently set between 3000 and 4000 sequences.

License Permission to use, copy and distribute test and restricted versions of

141

B.15. AUTHORS Thesis

this software and its documentation for any purpose is hereby granted
without fee, provided that this copyright and notice appears in all copies.

Disclaimer The author disclaims all warranties with regard to this software.
Use it at your own risk.

Copyright c© 1999 for MIRA V1.x and EdIt: Bastien Chevreux, Thomas Pfis-
terer, Deutsches Krebsforschungszentrum Heidelberg – Dept. of Molecu-
lar Biophysics.
c© 2003 for MIRA V2.x: Bastien Chevreux.

All rights reserved.

External libraries MIRA uses the excellent Expat library to parse XML files.
Expat is Copyright c© 1998, 1999, 2000 Thai Open Source Software Cen-
ter Ltd and Clark Cooper as well as Copyright c© 2001, 2002 Expat main-
tainers.
See http://www.libexpat.org/ and
http://sourceforge.net/projects/expat/ for more information on
Expat.

B.15 Authors

Bastien Chevreux (mira): bach@chevreux.org
and Thomas Pfisterer (EdIt): t.pfisterer@dkfz-heidelberg.de

WWW:
http://www.chevreux.org/projects mira.html

http://www.dkfz-heidelberg.de/mbp-ased/

B.16 Miscellaneous

If you find this software useful, please send me a postcard. If postcards are not
available, a treasure chest full of spanish doubloons, gold and jewellery will do
nicely, thank you.

142

B.17. SEE ALSO Thesis

B.17 See Also

EdIt(1), gap4(1), pregap4(1), ttuner(1), scylla(1), pga(1), pta(1), cap4(1),
phred(1), phrap(1), cross match(1), clview(1), consed(1), caf2gap(1), gap2caf (1),
compress(1) and gzip(1).

143

Literature

References

Allex, C. F., Baldwin, S. F., Shavlik, J. W. and Blattner, F. R. (1996), Improving
the Quality of Automatic DNA Sequence Assembly using Fluorescent Trace-
Data Classifications. Intell. Systems Mol. Biol., 4, 3–14.

Allex, C. F., Baldwin, S. F., Shavlik, J. W. and Blattner, F. R. (1997), Increasing
Consensus Accuracy in DNA Fragment Assemblies by Incorporating Fluores-
cent Trace Representations. Proceedings, Fifth International Conference on
Intelligent Systems for Molecular Biology, AAAI Press, pp. 3–14, pp. 3–14.

Allison, L. (1993), A fast Algorithm for the Optimal Alignment of Three Strings.
Journal of theoretical Biology, 164, 261–269.

Althaus, E., Caprara, A., Lenhof, H.-P. and Reinert, K. (2002), Multiple se-
quence alignment with arbitrary gap costs: Computing an optimal solution
using polyhedral combinatorics. Bioinformatics, 18, S4–S16, Suppl. 2.

Altschul, S. F., Madden, T. L., Schffer, A. A., Zhan, J., Zhang, Z., Miller, W. and
Lipman, D. J. (1997), Gapped BLAST and PSI-BLAST: a new generation of
protein database search programs. Nucleic Acids Research, 25, 3389–3402.

Anderson, I. and Brass, A. (1998), Searching DNA databases for similarities to
DNA sequences: when is a match significant? Bioinformatics, 14(4), 349–356.

Anson, E. L. and Myers, E. W. (1997), A Program for Refining DNA Sequence
Multi-Alignments. Journal of Computational Biology, 4(3), 269–283.

Armen, C. and Stein, C. (1995), Short Superstrings and the Structure of Over-
lapping Strings. Journal of Computational Biology, 2(2), 307–332.

Arslan, A. N., Egecioglu, O. and Pevzner, P. A. (2001), A new approach to se-
quence comparison: normalized sequence alignment. Bioinformatics, 17(4),
327–337.

144

REFERENCES Thesis

Asayama, M., Saito, K. and Kobayashi, Y. (1998), Translational attenuation of
the Bacillus subtilis spo0B cistron by an RNA structure encompassing the
initiation region. Nucleic Acids Research, 26(3), 824–830.

Baeza-Yates, R. A. and Gonnet, G. H. (1992), A New Approach to Text Search-
ing. Commun. of the Assoc. for Comp. Mach., 35, 74–82.

Bailey, J. A., Yavor, A. M., Massa, H. F., Trask, B. J. and Eichler, E. E. (2001),
Segmental Duplications: Organization and Impact Within the Currant Hu-
man Genome Project Assembly. Genome Research, 11, 1005–1017.

Barker, G., Batley, J., O’ Sullivan, H., Edwards, K. J. and Edwards, D. (2003),
Redundancy based detection of sequence polymorphisms in expressed se-
quence tag data using autoSNP. Bioinformatics, 421–2.

Barton, G. J. (1993), An efficient algorithm to locate all locally optimal align-
ments between two sequences allowing for gaps. Computer Applications in
the Bioscience, 9(6), 729–734.

Baxevanis, A. and Ouellete, B. (eds.) (1998), Bioinformatics: A Practical Guide
to the Analisys of Genes and Proteins. Wiley-Liss, Inc., ISBN 0-471-19196-5.

Berno, A. J. (1996), A Graph Theoretic Approach to the Analysis of DNA Se-
quencing Data. Genome Research, 6, 80–91.

Bonfield, J. K., Rada, C. and Staden, Rodger, S. (1998), Automated detection of
point mutations using fluorescent sequence trace subtraction. Nucleic Acids
Research, 26, 3404–3409.

Bonfield, J. K., Smith, K. F. and Staden, R. (1995a), The application of numer-
ical estimates of base calling accuracy to DNA sequencing projects. Nucleic
Acids Research, 23(8), 1406–1410.

Bonfield, J. K., Smith, K. F. and Staden, R. (1995b), A new DNA sequence as-
sembly program. Nucleic Acids Research, 23(24), 4992–4999.

Bonfield, J. K. and Staden, R. (1996), Experiment files and their application
during large-scale sequencing projects. DNA Sequence, 6, 109–117.

Boyer, R. S. and Moore, J. S. (1977), A Fast String Searching Algorithm. Com-
mun. of the Assoc. for Comp. Mach., 20(10), 762–772.

145

REFERENCES Thesis

Bray, N., Dubchak, I. and Pachter, L. (2003), AVID: A Global Alignment Pro-
gram. Genome Research, 13, 97–102.

Bruce, A., Bray, D., Lewis, J., Raff, M., Roberts, K. and Watson, J. D. (1994),
Molecular biology of the cell. Garland Publishing, 3rd edn.

Bucher, P. and Hofmann, K. (1996), A Sequence Similarity Search Algorithm
Based on a Probabilistic Interpretation of an Alignment Scoring System. In-
tell. Systems Mol. Biol., 4, 44–51.

Camargo, A. A., Samaia, Helena P.B. Dias-Neto, E., Simao, D. F. and Migotto,
I. A. e. a. (2001), The contribution of 700,000 ORF sequence tags to the def-
inition of the human transcriptome. Proceedings of the National Academy of
Sciences of the United States of America, 98(21), 12103–12108.

Chan, S. C., Wong, A. K. C. and Chiu, D. K. Y. (1992), A survey of multiple
sequence comparison methods. Bulletin of Mathematical Biology, 54(4), 563–
598.

Chao, K.-M., Hardison, R. C. and Miller, W. (1994), Recent Developments in
Linear-Space Alignment Methods: A Survey. Journal of Computational Biol-
ogy, 1(4), 271–291.

Chao, K.-M., Zhang, J., Ostell, J. and Miller, W. (1995), A local alignment tool
for very long DNA sequences. Computer Applications in the Bioscience, 11(2),
147–153.

Chen, T. and Skiena, S. S. (2000), A case study in genome-level fragment as-
sembly. Bioinformatics, 16(6), 494–500.

Cheung, J., Estivill, X., Khaja, R., MacDonald, J. R., Lau, K., Tsui, L.-C. and
Scherer, S. W. (2003), Genome-wide detection of segmental duplications and
potential assembly errors in the human genome sequence. Genome Biology,
4(4), R25.1–R25.10.

Chou, H.-H. and Holmes, M. H. (2001), DNA sequence quality trimming and
vector removal. Bioinformatics, 17(12), 1093–1104.

Dardel, F. (1985), A microcomputer program for comparison and alignment of
DNA sequence gel readings. Computer Applications in the Bioscience, 1(3),
173–175.

146

REFERENCES Thesis

Dear, S., Durbin, R., Hilloier, L., Marth, G., Thierry-Mieg, J. and Mott, R.
(1998), Sequence Assembly with CAFTOOLS. Genome Research, 8, 260–267.

Delcher, A. L., Phillippy, A., Carlton, J. and Salzberg, S. L. (2002), Fast al-
gorithms for large-scale genome alignment and comparison. Nucleic Acids
Research, 30(11), 2478–2483.

DOE (1992), DOE Human Genome Program: Primer on Molecular Genetics.
Tech. rep., U.S. Department of Energy; Office of Energy Research; Office of
Health and Environmental Research, Washington, DC 20585.

Durbin, R. and Dear, S. (1998), Base Qualities Help Sequencing Software.
Genome Research, 8, 161–162.

Eichler, E. E. (2001), Segmental Duplications: What’s Missing, Misassigned,
and Misassembled – and Should We Care? Genome Research, 11, 653–656.

Engle, M. and Burks, C. (1993), Artificially generated data sets for testing DNA
fragment assembly algorithms. Genomics, 16, 286–288.

Engle, M. and Burks, C. (1994), GenFrag 2.2: New features for more robust
fragment assembly benchmarks. Computer Applications in the Bioscience, 10,
567–568.

Ewing, B. and Green, P. (1998), Base-Calling of Automated Sequencer Traces
Using Phred. II. Error Probabilities. Genome Research, 8, 186–194.

Ewing, B., Hillier, L., Wendl, M. C. and Green, P. (1998), Base-Calling of Auto-
mated Sequencer Traces Using Phred. I. Accuracy Assessment. Genome Re-
search, 8, 175–185.

Felsenstein, J., Sawyer, S. and Kochin, R. (1982a), An efficient method for
matching nucleic acid sequences. Nucleic Acids Research, 10, 133–139.

GCB99 (1999), Computer Science and Biology: Proceedings of the Germanc Con-
ference on Bioinformatics GCB ‘99, GBF-Braunschweig, Dep. of Bioinformat-
ics.

Giegerich, R. (2000), A systematic approach to dynamic programming in bioin-
formatics. Bioinformatics, 16(8), 665–77.

Giegerich, R. and Wheeler, D. (1996), Pairwise Sequence Alignment.
http://www.techfak.uni-bielefeld.de/bcd/Curric/PrwAli/prwali.html.

147

REFERENCES Thesis

Giladi, E., Walker, M., Wang, J. and Volkmuth, W. (2002), SST: an algorithm for
finding near-exact sequence matches in time proportional to the logarithm of
the database size. Bioinformatics, 873–877.

Gordon, D., Abajian, C. and Green, P. (1998), Consed: A Graphical Tool for
Sequence Finishing. Genome Research, 8, 195–202.

Gotoh, O. (1993), Optimal alignment between groups of sequences and its ap-
plication to multiple sequence alignment. Computer Applications in the Bio-
science, 9(3), 361–370.

Grice, J. A., Hughey, R. and Speck, D. (1997), Reduced Space Sequence Align-
ment. Computer Applications in the Bioscience, 13(1), 45–53.

Grillo, G., Attimonelli, M., Luici, S. and Pesole, G. (1996), CLEANUP: a
fast computer program for removing redundancies from nucleotide sequence
databases. Computer Applications in the Bioscience, 12(1), 1–8.

Gronek, G. (1995a), Ähnlichkeiten gesucht: Fehlertoleranter Suchalgorithmus
’Shift-AND’. c’t, 5, 294–301.

Gronek, G. (1995b), Optimal schnell: Schnelle Textsuche mit ’Optimal Mis-
match’. c’t, 3, 278–284.

Guan, X. and Uberbacher, E. C. (1996), Alignments of DNA and protein se-
quences containing frameshift errors. Computer Applications in the Bio-
science, 12(1), 31–40.

Heber, S., Alekseyev, M., Sze, S., Tang, H. and Pevzner, P. (2002), Splicing
graphs and EST assembly problem. Bioinformatics, S181–8, Suppl 1.

Huang, X. (1994), On global sequence alignment. Computer Applications in the
Bioscience, 10(3), 227–235.

Huang, X. (1996), An Improved Sequence Assembly Program. Genomics, 33,
21–31.

Huang, X. and Madan, A. (1999), CAP3: A DNA Sequence Assembly Program.
Genome Research, 9, 868–877.

Idury, R. M. and Waterman, M. S. (1995), A New Algorithm for DNA Sequence
Assembly. Journal of Computational Biology, 2(2), 291–306.

148

REFERENCES Thesis

Jaffe, D. B., Butler, Jonathan Gnerre, S., Mauceli, E., Lindblad-Toh, K., Mesirov,
J. P., Zody, M. C. and Lander, E. S. (2003), Whole-Genome Sequence Assembly
for Mammalian Genomes: Arachne 2. Genome Research, 13(1), 91–96.

Johnston, R. E., Mackenzie, J. J. and Dougherty, W. (1986), Assembly of overlap-
ping DNA sequences by a program written in BASIC for 64K CP/M and MS-
DOS IBM-compatible microcomputers. Nucleic Acids Research, 14(1), 517–
527.

Katoh, K., Misawa, K., Kuma, K.-i. and Miyata, T. (2002), MAFFT: a novel
method for rapid multiple sequence alignment based on fast Fourier trans-
form. Nucleic Acids Research, 30(14), 3059–3066.

Kececioglu, J. D. and Myers, E. W. (1992), Combinatorial algorithms for DNA
sequence assembly. Tech. Rep. TR 92-37, University of California at Davis,
University of Arizona.

Keith, J., Adams, P., Bryant, D., Kroese, D.P. andMitchelson, K., Cochran, D.
and Lala, G. (2002), A simulated annealing algorithm for finding consensus
sequences. Bioinformatics, 1494–1499.

Kent, J. W. (2002), BLAT – The BLAST-Like Alignment Tool. Genome Research,
12, 656–664.

Kleinjung, J., Douglas, N. and Heringa, J. (2002), Parallelized multiple align-
ment. Bioinformatics, 1270–1271.

Klug, W. S. and Cummings, M. R. (1996), Essential of Genetics. Prentice Hall,
2nd edn.

Kumar, S. and Rzhetsky, A. (1996), Evolutionary relationships of eukaryotic
kingdoms. Journal of Molecular Evolution, 42, 183–193.

Lario, A., González, A. and Dorado, G. (1997), Automated Laser-Induced Flu-
orescence DNA Sequencing: Equalizing Signal-to-Noise Ratios Significantly
Enhances Overall Performance. Analytical Biochemistry, 247, 30–33.

Lassmann, T. and Sonnhammer, E. L. (2002), Quality assessment of multiple
alignment programs. FEBS Letters, 529(1), 126–130.

Lawrence, C. B., Honda, S., Parrott, N. W., Flood, T. C., Ghu, L., Zhang, L.,
Jain, M., Larson, S. and Myers, E. W. (1994), The Genome Reconstruction

149

REFERENCES Thesis

Manager: A Software Environment for Supporting High-Throughput DNA
Sequencing. Genomics, 23, 192–201.

Lee, C., Grasso, C. and Sharlow, M. F. (2002), Multiple sequence alignment
using partial order graphs. Bioinformatics, 18(3), 452–464.

Lipshutz, R. J., Taverner, F., Henessy, K., Hartzell, G. and Davis, R. (1994),
DNA Sequence Confidence Estimation. Genomics, 19, 417–424.

Ma, B., Tromp, J. and Li, M. (2002), PatternHunter: faster and more sensitive
homology search. Bioinformatics, 18(3), 440–445.

Miller, W. (2001), Comparison of genomic DNA sequences: solved and unsolved
problems. Bioinformatics, 17(5), 391–397.

Morgenstern, B., Dress, A. and Werner, T. (1996), Multiple DNA and protein
sequence alignment based on segment-to-segment comparison. Proceedings
of the National Academy of Science USA, 93, 12098–12103.

Morgenstern, B., Goel, S., Sczyrba, A. and Dress, A. (2003), AltAVisT: Com-
paring alternative multiple sequence alignments. Bioinformatics, 19(3), 425–
426.

Müller, W. E. (2001), How was metazoan threshold crossed: the hypothetical
Urmetazoa (part A). Comparative Biochemistry and Physiology, 129, 433–
460.

Myers, E. W. (1991), An Overview of Sequence Comparison Algorithms in
Molecular Biology. Tech. Rep. 29, Department of Computer Science; The Uni-
versity of Arizona, Tucson, Arizona 85721.

Myers, E. W. (1994), Advances in Sequence Assembly, Academic Press. pp. 231–
238.

Myers, E. W. (1995), Toward Simplifying and Accurately Formulating Fragment
Assembly. Journal of Computational Biology, 2(2), 275–290.

Myers, G. (1999), A Whole Genome Assembler for Drosophila. GCB99 (1999),
p. 44.

Myers, G., Selznick, S., Zhang, Z. and Miller, W. (1996), Progressive Multiple
Alignment with Constraints. Journal of Computational Biology, 3(4), 563–
572.

150

REFERENCES Thesis

Needleman, S. and Wunsch, C. (1970), A general method applicable to the
search for similarities in the amino acid sequence of two proteins. Journal
of Molecular Biology, 48(3), 443–453.

Nickerson, D. A., Taylor, S. L. and Rieder, M. J. (2000), Identifying Single Nu-
cleotide Polymorphisms (SNPs) in Human Candidate Genes. Research Ab-
stracts from the DOE Human Genome Program Contractor-Grantee Workshop
VIII, February 27-March 2, Santa Fe, NM.

Ning, Z., Cox, A. J. and Mullikin, J. C. (2001), SSAHA: A Fast Search Method
for Large DNA Databases. Genome Research, 11, 1725–1729.

Notredame, C. (2002), Recent progress in multiple sequence alignment: a sur-
vey. Pharmacogenomics, 3, 131–144.

Notredame, C. and Higgins, D. G. (1996), SAGA: sequence alignment by genetic
algorithm. Nucleic Acids Research, 24(8), 1515–1524.

Notredame, C., Holm, L. and Higgins, D. G. (1998), COFFEE: an objective func-
tion for multiple sequence alignments. Bioinformatics, 14(5), 407–422.

Otu, H. H. and Sayood, K. (2003), A divide-and-conquer approach to fragment
assembly. Bioinformatics, 19(1), 22–29.

Paracel (2002a), Paracel Filtering Package User Manual. Paracel Inc., 1055 E.
Colorado Blvd; Pasadena, CA 91106.

Paracel (2002b), PGA: Paracel Genome Assembler User Manual. Paracel Inc.,
1055 E. Colorado Blvd; Pasadena; CA 91106.

Paracel (2002c), PTA: Paracel TranscriptAssembler User Manual. Paracel Inc.,
1055 E. Colorado Blvd; Pasadena, CA 91106.

Parsons, R., Forrest, S. and Burks, C. (1993), Genetic Algorithms for DNA Se-
quence Assembly. L. Hunter, D. B. Searls, J. W. S. (ed.), Proc. of the 1st In-
ternational Conference on Intelligent Systems for Molecular Biology, AAAI,
Bethesda, MD, USA, pp. 310–318, pp. 310–318, ISBN 0-929280-47-4.

Pearson, W. R. (1995), Comparison of Methods for Searching Protein Sequence
Databases. Protein Science, 4, 1145–1160.

Pearson, W. R. (1998), Empirical Statistical Estimates for Sequence Similarity
Searches. Journal of Molecular Biology, 276, 71–84.

151

REFERENCES Thesis

Peltola, H., Söderlund, H. and Ukkonen, E. (1984), SEQAID: a DNA sequence
assembling program based on a mathematical model. Nucleic Acids Research,
12(1), 307–321.

Pevzner, P. A. and Tang, H. (2001), Fragment assembly with double-barreled
data. Bioinformatics, 17, S225–S233, Suppl. 1.

Pevzner, P. A., Tang, H. and Waterman, M. (2001), An Eulerian path approach
to DNA fragment assembly. Proceedings of the National Academy of Science
USA, 98, 9748–9753.

Pfisterer, T. and Wetter, T. (1999), Computer Assisted Editing of Genomic Se-
quences - Why and How We Evaluated a Prototype. Puppe (1999), pp. 201–
209.

Prunella, N., Luini, S., Attimonelli, M. and Pesole, G. (1993), FASTPAT: a fast
and efficient algorithm for string searching in DNA sequences. Computer Ap-
plications in the Bioscience, 9(5), 541–545.

Puppe, F. (ed.) (1999), XPS-99: Knowledged-Based Systems. Lecture Notes
in Artificial Intelligence; Subseries of Lecture Notes in Computer Science,
Springer-Verlag, Berlin Heidelberg New York.

Rajasekaran, S., Jin, X. and Spouge, J. (2002), The efficient computation of
position-specific match scores with the fast fourier transform. Journal of
Computational Biology, 9(1), 23–33.

Reinert, K., Stoye, J. and Will, T. (2000), An iterative method for faster sum-of-
pairs multiple sequence alignment. Bioinformatics, 16(9), 808–814.

Richterich, P. (1998), Estimation of Errors in “Raw” DNA Sequences: A Valida-
tion Study (Letter). Genome Research, 8, 251–259.

Rosenblum, B., Lee, L., Spurgeon, S., Khan, S., Menchen, S., Heiner, C. and
Chen, S. (1997), New dye-labeled terminators for improved DNA sequencing
patterns. Nucleic Acids Research, 25(22), 4500–4504.

Sanders, J. Z., Petterson, A. A., Hughes, P. J., Connell, C. R., Raff, M., Menchen,
S., Hood, L. E. and Teplow, D. B. (1991), Imaging as a tool for improving
length and accuracy of sequence analysis in automated fluorescence-based
DNA sequencing. Electrophoresis, 12, 3–11.

152

REFERENCES Thesis

Sanger, F., Nicklen, S. and Coulson, A. (1977), DNA sequencing with chain-
terminating inhibitors. Proceedings of the National Academy of Science USA,
74, 5463–5467.

Schlosshauer, M. and Ohlsson, M. (2002), A novel approach to local reliability
of sequence alignments. Bioinformatics, 18(6), 847–854.

Schuler, G. D. (1997), Pieces of the puzzle: expressed sequence tags and the
catalog of human genes. J Mol Med, 75, 694–698.

Schuler, G. D. (1998), Sequence Alignmnent and Database Searching. Baxevanis
and Ouellete (1998), pp. 145–171, ISBN 0-471-19196-5.

Shpaer, E. G., Robinson, M., Yee, D., Candlin, J. D., Mines, R. and Hunkapiller,
T. (1996), Sensitivity and Selectivity in Protein Similarity Searches: A Com-
parison of Smith-Waterman in Hardware to BLAST and FASTA. Genomics,
38(2), 179–191.

Smith, T. F. and Waterman, M. S. (1981), Identification of Common Molecular
Subsequences. Journal of Molecular Biology, 147, 195–197.

Smith, T. F., Waterman, M. S. and Fitch, W. M. (1981), Comparative Biose-
quence Metrics. Journal of Molecular Evolution, 18, 38–46.

Staden, R. (1984), Computer methods to aid the determination and analysis of
DNA sequences. Biochemical Society Transaction, 12(6), 1005–1008.

Staden, R. (1989), Methods for calculating the probabilities of finding patterns
in sequences. Computer Applications in the Bioscience, 5(2), 89–96.

Staden, R. (1996), The Staden Sequence Analysis Package. Molecular Biotech-
nology, 5, 233–241.

Staden, R., Bonfield, J. and Beal, K. (1997), The New Staden Package Manual -
Part 1. Medical Research Council, Laboratory of Molecular Biology.

Stoye, J. (1998), Multiple sequence alignment with the divide-and-conquer
method. Gene / GC, 211, 45–56.

Sunday, D. M. (1990), A very fast substring search algorithm. Commun. of the
Assoc. for Comp. Mach., 33(8), 132–142.

153

REFERENCES Thesis

Tammi, M. T., Arner, E., Britton, T. and Andersson, B. (2002), Separation of
nearly identical repeats in shotgun assemblies using defined nucleotide posi-
tions, DNPs. Bioinformatics, 18(3), 379–88.

Thompson, J. D., Plewniak, F. and Poch, O. (1999a), A comprehensive compari-
son of multiple sequence alignment programs. Nucleic Acids Research, 27(13),
2682–2690.

Thompson, J. D., Plewniak, F. and Poch, O. (1999b), A comprehensive compari-
son of multiple sequence alignmnet programs. Nucleic Acids Research, 27(13),
2682–2690.

Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G.,
Smith, H. O., Yandell, M., Evans, C. A., Holt, R. A., Gocayne, J. D., Ama-
natides, P., Ballew, R. M., Huson, D. H. and Wortman, J. R. e. a. (2001), The
Sequence of the Human Genome. Science, 1304–1351.

Walther, D., Bartha, G. and Morris, M. (2001), Basecalling with LifeTrace.
Genome Research, 11, 875–888.

Wang, J., Ka-Shu, G. W., Wang, J., Ni, P., Han, Y., Huang, X., Zhang, J., Ye, C.,
Zhang, Y., Hu, J., Zhang, K., Xu, X., Cong, L., Lu, H., Ren, X., Ren, X., Dai,
D., He, J., Tao, L., Passey, D. A., Yang, H., Yu, J. and Li, S. (2002), RePS: A
Sequence Assembler That Masks Exact Repeats Identified from the Shotgun
Data. Genome Research, 12, 824–831.

Wang, L. and Jiang, T. (1994), On the Complexity of Multiple Sequence Align-
ment. Journal of Computational Biology, 1(4), 337–348.

Wilbur, W. and Lipman, D. J. (1983), Rapid similarity searches of nucleic acid
and proteins data banks. Proceedings of the National Academy of Science
USA, 80, 726–730.

Wu, S. and Manber, U. (1992a), Approximate Pattern Matching. Byte Magazine,
11, 281–292.

Wu, S. and Manber, U. (1992b), Fast Text Searching Allowing Errors. Commun.
of the Assoc. for Comp. Mach., 35(10), 83–91.

Xu, Y., Mural, R. J. and Uberbacher, E. C. (1995), Correcting sequencing errors
in DNA coding regions using dynamic programming approach. Computer Ap-
plications in the Bioscience, 11(2), 117–124.

154

OWN PUBLICATIONS Thesis

Yu, Z., Li, T., Zhao, J. and Luo, J. (2002), PGAAS: a prokaryotic genome assem-
bly assistant system. Bioinformatics, 18(5), 661–665.

Zhang, C. and Wong, A. K. (1997), A genetic algorithm for multiple molecular se-
quence alignment. Computer Applications in the Bioscience, 13(6), 565–581.

Own publications

Chevreux, B., Pfisterer, T., Drescher, B., Driesel, A. J., Müller, W. E., Wetter, T.
and Suhai, S. (2004), Using the miraEST Assembler for Reliable and Auto-
mated mRNA Transcript Assembly and SNP Detection in Sequenced ESTs.
Genome Research, 14(6).

Chevreux, B., Pfisterer, T. and Suhai, S. (2000), Automatic Assembly and Edit-
ing of Genomic Sequences. Genomics and Proteomics – Functional and Com-
putational Aspects, Kluwer Academic/Plenum Publishers, New York, chap. 5,
pp. 51–65.

Chevreux, B., Wetter, T. and Suhai, S. (1999), Genome Sequence Assembly Us-
ing Trace Signals and Additional Sequence Information. Computer Science
and Biology: Proceedings of the German Conference on Bioinformatics GCB
‘99, GCB, pp. 45–56.

155

Index

∇-character, 12
∗-character, 7

ADS, see aligned dual sequence
AFH, see atomic fault hypotheses
algorithms

n, m recursive look-ahead, 66
design techniques, 111
DNA-Shift-AND, 41–44
dynamic programming, 40
dynamic programming, 16

parametrising, 58
fast fourier transform, 40
greedy, 66
heuristic string searching, 41
optimal mismatch, 40
read extension, 84
requirements, 109
string comparison, 40
window search, 85
ZEBRA, 45–53

aligned dual sequence, 84
aligned dual sequence, 61
alignment, 12

calculation, 16
coverage, 13, 65, 83
expected score, 59
global, 15, 40
k-tuple, 13
local, 15, 40, 54

matrix, 16
optimal, 67
optimality, 28
quality, 60
score, 14, 59
score ratio, 60
SCS, 15
weight, 61

alphabet, 6
IUPAC, 7
representations, 7

area pooling, 36
assembler

comparison, 95
GAP4, 95
integrated assembler-editor strat-

egy, 28
MIRA, 94, 95
PHRAP, 26, 95
strategies, 25
strategy, 4

assembly
layout, 62, 83
projects, 95

atomic fault hypotheses, 77
automatic editor, 31, 71
automatic editor, 4, 77

strategy, 77

base

156

Index Thesis

confidence value, 3
dideoxynucleotide termination, 10
extraction, see base-calling
probability, 3, 19, 71
quality, 2, 18, 19

base-calling, 11
alternative, 71
errors, 18
PHRED, 19

block-indel model, 59
building blocks, see read

chimera, 20, 66
clipping

quality, 36
sequencing vector, 36
splice variants, 36

complement
base, 6

complexity
banded dynamic programming,

56
DNA-Shift-AND, 42
dynamic programming, 16, 41,

56
consensus

constraints, 69
errors, 65
sequence, 65

contamination, 20
contig, 25, 67

building, 62
anchor, 64
anchor point, 68
iterative approach, 63
result, 64
starting point, 64
strategies, 64

minimum number, 62
object, 67
quality improvement, 86
read acceptance, 68
read acceptance, 67
read rejection, 67

coverage, see alignment
cross match, 95
cytochromes, 23

data
burst, 50
speculative prefetch, 50

distribution
bias, 11
random, 47
uniform, 11, 80

DNASAND, see algorithms
dye

termination, 10
dynamic programming, see algorithms

EdIt, see automatic editor
electrophoresis, 10
endgaps, 12
exon, 21
expert system, see automatic editor

fast fourier transform, see algorithms
finishing, 3
fuguization, 26

gap
character, see ∗-character
penalty function, 59

genome, 6
graph

edge, 62
look-ahead, 66

157

Index Thesis

node, 62
number of edges, 65
searching, 64
weighted, 62

hash
calculation, 45
distance, 46
distance histogram, 48
imprint, 46
index table, 46
position, 46

HCR, see regions
hidden data, 36
histogram, 48
Human Genome Project, 3

imprint, see hash
indel, 18, 20
insert, 8
intron, 21
IUPAC, see alphabet

layout, see assembly
LCR, see regions
Levenshtein distance, 42

matrix
score, 14, 59
weight, 14, 59

micro-satellites, see repeat
MIRA

acronym, 94
misassembly

detection, 82
prevention, 83

NP
complete, 16

hard, 15

optimal mismatch, see algorithms
overlap

detection, 38

pattern analysis, see repeat
PHRAP, see assembler
PHRED, see base-calling
plasmid, 8
point mutation, 20
polybase

poly-A / poly-T uncovering, 37
possible repeat marker base, see re-

peat
PRMB, see repeat

read, 11
building block, 68
chimeras, 67, 69
extension, 83

algorithm, 84
extra-contig, 84
intra-contig, 84

fast scanning, 38
region

error, 77
low confidence (LCR), 84
single-base error, 70

regions
hidden data, 83
high confidence (HCR), 28, 37,

84
low confidence (HCR), 37
low confidence (LCR), 28

regular expressions, 38
repeat

in graphs, 64
long, 79

158

Index Thesis

micro-satellites, 78
pattern, 82
pattern analysis, 80
PRMB: possible repeat marker

base, 83
recognition, 78, 80
short, 78
standard elements, 69
standard types, 31
types, 78

restriction enzyme, 8

Sanger
nucleotide labelling, 10

scaffolding, 26
score

alignment, 14
column, 14
of two bases, 14
ratio, 60

score matrix, see matrix
sequence, 7

comparison, 50
contamination, 20
definition, 7
error rate, 2
extended length, 13
length, 2, 7, 8
quality, 18
quality improvement, 86

sequences
comparing, 46

sequencing vector, 35
Shift-AND, see algorithms
shotgun method, 8
signal

base extraction, see base-calling
fluorescence detection, 10

quality, 17
quality measures, 77
shape information, 71
signal-to-noise ratio, 83
trace, 10, 71, 77
translation, see base calling

signal analysis
advantages, 4
black box, 71

signal analysis, 70
singlet, 77
SNP, 20
sonication, 8
splicing, 22

template
constraints, 72
sequencing, 72

trace, see signal

vector
cloning, 8
sequencing, 8

weight matrix, see matrix

ZEBRA, see algorithms

159

Curriculum Vitae

Particulars
Name: Bastien Chevreux
Date of birth: 05.07.1972
Nationality: french
Place of birth: Duisburg, Federal Republic of Germany
Marital status: single
Parents: Bernard Chevreux

Lydia Chevreux (born Simon)

Schooling
1978 – 1979 Grundschule Duisburg

Duisburg, Federal Republic of Germany
Primary school: first class

1979 – 1983 Deutsche Schule Brüssel
Brussels, Belgium
Primary school: second to fourth class
Comprehensive secondary school: fifth class

1983 – 1991 Gymnasium Thomaeum Kempen
Kempen, Federal Republic of Germany
Comprehensive secondary school: 6th to 13th class

June 12th, 1991 Gymnasium Thomaeum Kempen
Kempen, Federal Republic of Germany
General qualification for university entrance (Abitur)

University
Summer term 1992 Universität Heidelberg / FH Heilbronn

Heidelberg / Heilbronn, Germany
Start of university studies in Medical Informatics

April 13th, 1994 Intermediate diploma

March 1st, 1997 Diploma of the University of Heidelberg
in Medical Informatics

Acknowledgements

“I’m all in favour of keeping dangerous weapons out of the hand of fools.
Let’s start with typewriters.” (Solomon Short)

I would first like to thank Thomas Pfisterer, Prof. Dr. Sándor Suhai, Dr. Bernd
Drescher and Prof. Dr. Thomas Wetter for their invaluable input, hours of discussion,
encouragement and a plethora of good ideas while working on this research project.

I also want to acknowledge and thank Dr. Gerald Nyakatura, Dr. Matthias Platzer
and Dr. Uwe Menzel at the former genome sequencing group of the IMB Jena for
their patience and numerous enhancement suggestions whilst explaining to me the
mysteries of DNA and the shotgun sequencing process. Dr. Jacqueline Weber did the
same for unravelling splicing in eukaryotic genomes. Needless to say that all errors
that slipped into this thesis while writing about those topics are mine.

To Dr. Andrea Hörster I am most grateful for reading a preliminary version of this
thesis very, very thoroughly.

I’d like to thank Prof. Dr. Werner E.G. Müller (University Mainz), Prof. Dr. Albert
J. Driesel (VitiGen AG) and Prof. Dr. Jörn Bullerdiek (University Bremen) for kindly
providing EST datasets

James Bonfield (now at the Wellcome Trust Sanger Institute) was most helpful for
making mira compatible in output to the Staden package.

Without Volker Schmidt (DLR Lampoldshausen), I’d still sit – sometimes quite per-
plex – in front of the mysteries hidden within the depths of LATEX and PDF creation.
The same applies for helpful souls in the USENET de.comp.text.tex newsgroup.

Last, but not certainly not least, Silke Mink supported me all along the last two years
of this thesis, cheering me up and encouraging me to continue whenever I needed it.

Thanks a lot . . . to all of you!

161

